Determine the multiplicity and coupling constants of each of the following simulated first-order 500 MHz 1H NMR peaks. Provide descriptions (e.g. "doublet of quartets") and coupling constants (e.g., 12.3, 3.8 Hz) in the blanks provided.

<table>
<thead>
<tr>
<th>ppm</th>
<th>hz</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.476</td>
<td>737.8</td>
<td>2.04</td>
</tr>
<tr>
<td>1.491</td>
<td>745.3</td>
<td>4.23</td>
</tr>
<tr>
<td>1.494</td>
<td>747.2</td>
<td>2.43</td>
</tr>
<tr>
<td>1.506</td>
<td>752.8</td>
<td>2.43</td>
</tr>
<tr>
<td>1.509</td>
<td>754.7</td>
<td>4.23</td>
</tr>
<tr>
<td>1.525</td>
<td>762.3</td>
<td>2.04</td>
</tr>
</tbody>
</table>

description:

coupling constants (in appropriate order):

description:

coupling constants (in appropriate order):

The saturated ring of this phosphate ester has four proton resonances which are shown. Assign the multiplets and explain their appearance.
Assign and interpret the 300 MHz 1H NMR spectrum of this compound as fully as possible. Can you draw any conclusions about the conformation? [The expanded multiplets A–G are all plotted to the same height].