Lecture 1: Overview

- Course administration
 - Course web pages
- Getting started
 - Obtain your UCInetID
 - Obtain an account on the EECS servers
 - Log into the server
Course Administration

- Course web pages online at http://eee.uci.edu/06f/18410/
 - Instructor information
 - Course description and contents
 - Course policies and resources
 - Course schedule
 - Homework assignments
 - Course communication
 - Mailing list (announcements)
 - Email (administrative issues)
Getting Started

- Obtain an account on the EECS servers
- Your working account in EECS
Getting Started

• Log into the server
 • Terminal with SSH protocol (secure shell)
 • EECS servers
 • east.eecs.uci.edu
 • newport.eecs.uci.edu
 • malibu.eecs.uci.edu
 • User name, password
Java compilation

- Programming assignments should be completed in Java
- To compile a file into a class file
 javac file.java
- To execute a class file
 java file.class
- Java documentation available at http://java.sun.com/
Alternate Programming Environments

• You can use any platform you wish to write course assignments
• You can install Java on your own machine (MS Windows, Macintosh, Linux)
• You can use any text editor to write your code in
• But check that your assignments run on the Sun machines before turning them in
What is an Algorithm?

- An algorithm:
 - Takes an input (a value or set of values)
 - Produces an output (a value or set of values)
 - Terminates
 - Output satisfies some correctness property (the output of a sorting algorithm is sorted)
Why take this class?

- Fundamental - cross cutting across all areas of computer science
- Analysis aspect - need to know how long an algorithm takes to execute (will your code work with 1 million entries, 1 billion?), how to classify the difficult of problems
- Provides many solutions for a given problems
- Many applications of a given solutions
Example Algorithm: Sorting n integers

- Problem statement:
 - Input: An array $A=\{a_1, a_2, ..., a_n\}$
 - Output: An array $A'=\{a'_1, a'_2, ..., a'_n\}$ such that $a_i \leq a_{i+1}$ for $1 \leq i < n$.

- Many different possible algorithms to solve this problem
 - Different algorithms can have very different runtimes
 - Important to understand behavior of algorithm (can it handle large inputs)?
Analysis of Execution Time

- Use algorithm analysis to characterize behavior of algorithms
- Assumptions:
 - RAM (random access memory) model- all memory accesses are constant time
 - Sequential instruction execution (single processor)
 - Basic instructions are constant time (add, multiply, divide, subtract, compares, ...)

Algorithm Runtime

- Could measure it, but want a formula $T(n)$ where n is the problem size so we can predict it
- Want to factor out machine details as scaling factors
- Worst case, best case, average case
search(A, key)
1. for i ← 1 to length[A]
2. if A[i]=key
3. then return i

Searches for key in the array A and returns the index of the key
Best Case Algorithm Runtime

search(A, key) cost times
1. for i ← 1 to length[A] c₁ 1
2. if A[i]=key c₂ 1
3. then return i c₃ 1

T(n)=c₁+c₂+c₃
Worst Case Algorithm Runtime

search(A, key) cost times
1. for i ← 1 to length[A] c_1 n+1
2. if A[i]=key c_2 n
3. then return i c_3 1

T(n) = n(c_1+c_2+c_3)+c_1
Average Case Algorithm Runtime

```
search(A, key)  
1. for i ← 1 to length[A]  
   c1  n/2  
2. if A[i]=key  
   c2  n/2  
3. then return i  
   c3  1  

T(n) = n/2(c₁+c₂)+c₃
```
Asymptotic Notation

• The coefficients c_1, c_2, \ldots depend on details of the machine
• Typically we just care about how fast the runtime grows with increasing input size
 • Coefficients aren’t important
 • Lower order terms aren’t important
Big-O Notation

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.
- Informally, if $f(n)$ is $O(g(n))$, $f(n)$ grows no faster than $g(n)$.
Big-O Notation for Polynomials

- If $f(n)$ is a polynomial, then $f(n)$ is $O(n^d)$ where d is the polynomial degree of $f(n)$
 - Drop lower-order terms
 - Drop constant factors
- Example
 - $3n^2+2n$ is $O(n^2)$
Other notations

• big-Omega (lower bound)
 • $f(n)$ is $\Omega(g(n))$ if there are constants $c>0$ and $n_0 \geq 1$ such that $f(n) \geq cg(n)$ for $n \geq n_0$

• big-Theta (tight bound)
 • $f(n)$ is $\Theta(g(n))$ if there are constants $c>0$, $c'>0$, and $n_0 \geq 1$ such that $cg(n) \leq f(n) \leq c'g(n)$ for $n \geq n_0$

• little-oh (strict upper bound)
 • $f(n)$ is $o(g(n))$ if for any constant $c>0$ there is a constant $n_0 \geq 0$ such that $f(n) \leq cg(n)$ for $n \geq n_0$

• little-omega (strict lower bound)
 • $f(n)$ is $\omega(g(n))$ if for any constant $c>0$ there is a constant $n_0 \geq 0$ such that $f(n) \geq cg(n)$ for $n \geq n_0$