Lecture 10: Overview

- All Pairs Shortest Path
All Pairs Shortest Path

• For all vertices, i,j, want the shortest path between them
• Could simply use multiple invocations of Belman-Ford
• $O(V^2E)$ - for dense graph this is roughly $O(V^4)$
All Pairs Shortest Path

- matrix $W = (w_{ij})$
- Recursive solutions
 - matrix $L = (l_{ij})$
 - $l_{ij}^{(m)}$ = minimum path weight i to j containing at most m edges
 - for m^{th} iteration, want to RELAXPAIR(i, k, j)
 - if a path from i to k in $m-1$ steps, and k to j in 1 step is shorter than the current best path from i to j, then take path i...k->j
All Pairs Shortest Path

\[l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = ... \]

- Note that \(l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = ... \)
Extend-Shortest-Paths(L,W)

1 \ n \ <- \ \text{rows}[L]
2 \text{let } \ L' = (l_{ij}') \text{ be an } n \times n \text{ matrix}
3 \text{for } i <- 1 \text{ to } n
4 \quad \text{do for } j <- 1 \text{ to } n
5 \quad \quad \text{do } l_{ij}' <- \infty
6 \quad \quad \text{for } k <- 1 \text{ to } n
7 \quad \quad \quad \text{do } l_{ij}' <- \min(l_{ij}', l_{ik} + w_{kj})
8 \text{return } L'}
Computing Shortest Paths

- Can repeatedly use this to compute shortest path
- But $O(V^4)$ - same cost as Belman Ford
- Draw inspiration from matrix multiple example
- W gives shortest paths of length 1
- First use of extend-shortest paths gives shortest paths up to length 2
- Can use this instead of W to give shortest paths up to length 4...
FAST-ALL-PAIRS-SHORTEST-PATHS(W)

1 n <- rows[W]
2 L^{(1)} <- W
3 m <- 1
4 while m < n-1
5 do L^{(2m)} <- EXTEND-SHORTEST-PATHS(L^{(m)}, L^{(m)})
6 m <- 2m
7 return L^{(m)}
Floyd-Warshall Algorithm

• Idea: consider vertices \(\{1,\ldots,k\} \)

• Shortest path from \(i \) to \(j \) with intermediate vertices in set \(\{1,\ldots,k\} \)

• Two cases:
 • Doesn’t include \(k \), then it is the same as shortest path in set \(\{1,\ldots,k-1\} \)
 • Includes \(k \), then it can be composed with the shortest path from \(i \) to \(k \) in \(\{1,\ldots,k-1\} \) and the shortest path from \(k \) to \(j \) in \(\{1,\ldots,k-1\} \)

• Recursion relation:
FLOYD-WARSHALL(W)

1 n <- rows[W]
2 D^{(0)} <- W
3 for k <- 1 to n
4 do for i <- 1 to n
5 do for j <- 1 to n
6 do d_{ij}^{(k)} <- \min(d_{ij}^{(k-1)},d_{ik}^{(k-1)}+d_{kj}^{(k-1)})
7 return D^{(n)}
Johnson’s Algorithm

• What if we have a sparse graph?
• All previous algorithms work on adjacency matrix
• Johnson’s algorithm works on adjacency lists
Reweighting Graphs

• Lemma: Given a graph G with weight function w. Let h be any function mapping vertices to reals. For each edge \((u,v) \in E\), define
 \[w'(u,v) = w(u,v) + h(u) - h(v) \]
 We have the shortest paths using \(w'\).

• Why: All h’s in path cancel except first and last ones
Idea

• Re-weight graph to eliminate negative weights on edges
• Repeatedly use Dijkstra’s algorithm to calculate distances
• Compute weighting by adding vertex s with 0-weighted edges to the remaining vertices
• Run Belman-Ford
• Use distances as h function
Johnson(G)

1 computer G’, where V[G’]=V[G] U {s},
 E[G’]=E[G] U {(s,v):v in V[G]}, and
 w(s,v)=0 for all v in V[G]
2 if BELLMAN-FORD(G’, w, s)=FALSE
3 then print “negative cycle”
4 else for each vertex v in V[G’]
5 do set h(v) to value of d[s,v] computed in line 2
6 for each edge (u,v) in E[G’]
7 do w’(u,v) <- w(u,v) +h(u) - h(v)
8 for each vertex v in V[G]
9 do run DIJKSTRA(G, w’, u) to compute d”(u,v)
10 for each vertex v in V[G]
11 do d_{uv} <- d”(u,v) +h(v) - h(U)
12 return D