Lecture 13: Overview

- NP-Completeness (Chapter 34)
Hamiltonian Cycles

- Given graph G=(V,E)
- Find simple cycle in graph that contains each vertex V
- Hamiltonian-cycle problem:
 Does graph G have a hamiltonian cycle?
- HAM-CYCLE = {<G>: G is a hamiltonian graph}
How to Decide?

• One solution: check each possible permutation of the vertices to see if it is a hamiltonian path
• Encoding: For adjacency matrix, number of vertices=$\Omega(\sqrt{n})$ where $n=|\langle G \rangle|$
 • $m!$ possible permutations
 • Runtime is $\Omega(m!)=\Omega(\sqrt{n}!)=\Omega(2^{\sqrt{n}})$
Verification

• If we are given a sequence of vertices, we can verify whether it is a hamiltonian cycle easily in polynomial time.

• Idea: Algorithm takes in
 • Input string x
 • Certification of solution y
Complexity Class NP

- Class of languages that can be verified by a polynomial-time algorithm
- \(L = \{ x \in \{0, 1\}^* : \text{there exists a certificate } y \text{ with } |y| = O(|x|^c) \text{ such that } A(x,y) = 1 \} \)
- We say that \(A \) verifies language \(L \) in polynomial time
Reducibility

• How do we prove a problem NP-complete?
• Intuition: problem Q can be reduced to Q’ if any instance of Q is “easily rephrased” into an instance of Q’
• We say that \(L_1 \) is polynomial-time reducible to \(L_2 \) if there exists a polynomial time computable function \(f: \{0,1\}^* \rightarrow \{0,1\}^* \) such that for all \(x \) in \(\{0,1\}^* \)
\[x \in L_1 \text{ if and only if } f(x) \in L_2 \]
Call \(f \) the reduction function and a polynomial-time algorithm \(F \) that computes \(f \) is called a reduction algorithm
Proving P

• Lemma:
 If \(L_1, L_2 \subseteq \{0,1\}^* \) are languages such that \(L_1 \) is polynomial time reducible to \(L_2 \) then \(L_2 \in P \) implies \(L_1 \in P \).
Proving NP-complete

If \(L \in \{0,1\}^* \) is NP-complete if

1. \(L \in \text{NP} \)
2. \(L' \) is polynomial time reducible to \(L \) for every \(L' \in \text{NP} \) (NP-hard)
Can reduce all of NP to Circuit Satisfiability

• Idea:
 • Represent computation of A as sequence of configurations
 • Each configuration includes PC, machine state, input, certificate, working storage
 • Use combinatorial circuit M that implements computer hardware
Reduction

• Reduction algorithm uses bound to compute number of steps $T(n)$ that algorithm A takes for problem
• Generates $T(n)$ copies of M which feed the configuration to the copy of M
• Run circuit satisfiability on this converted problem
• Need to prove that reduction is polynomial
NP-completeness

• Can now reduce circuit satisfiability to another problem to show NP-hard
• 3-CNF is also NP complete
• Steps to reduce
 • Write parse tree
 • Add boolean variables to nodes
 • Convert to boolean formula
 • Write truth table
 • Convert to or’s of three anded terms
Clique Problem

• A clique in an undirected graph is a subset $V' \subseteq V$ of vertices, each pair of which is connected by an edge E.

• What is the maximum clique size in a graph?

• Corresponding decision problem:
 $\text{CLIQUE} = \{<G,k> : G \text{ is a graph with a clique of size } k\}$

• Naive algorithm is to list all k size subsets and see if whether it forms a clique
NP-hard by reducing 3-CNF-SAT

• Let C_1 and C_2 and $C_3...C_k$ be the 3-CNF formula
• For each clause C_i put triple of vertices v_1', v_2', and v_3'
• Put an edge between two vertices v_i' and v_j' if both of the following hold:
 • v_i' and v_j' are in different triples
 • there corresponding literals are consistent (they aren’t negations of each other)
Showing that it is a reduction

- Suppose the formula has a satisfying assignment.
 - Pick one “true” literal out of each term and select the corresponding vertex.
 - Between any two such vertices we have an edge
 - We have k such vertices
 - So we have a clique of size k
cont’d

• Suppose we have a clique of size k.
 • No edges of G connect vertices in the same triple, so V' contains exactly one vertex per triple
 • Can assign 1 to the corresponding literals without fear of assign 1 to the literal and its complement
 • Each clause is satisfied by this assignment