Lecture 5: Overview

- Dynamic Programming (Chapter 15)
- Programming Assignment 1 due next week
Case Study
Assembly Line

- Each stage has a cost
- Cost to move from one line to another
- \(2^{\text{stage}}\) possible routes
- For large numbers of stages, this search space is too large
Structure of Optimal Solution

• If optimal solution contains station $S_{i,j}$ then the path from the beginning to $S_{i,j}$ must be optimal and the path from $S_{i,j}$ to the end must be optimal (can’t make up for a bad route)

• Idea: start at stage 1 and compute optimal cost/path, then compute at stage 2....

• $f_i[j] = \min\{f_i[j-1], f_m[j-1] + t_{m,(j-1)}\}$
Optimal Solution

- Can write this as a recursive program
 - Still exponential (re-evaluating the same expressions many times) - need to store computed values
- Does not track path - store path in array
- Iterative version given in book
- Runtime is Theta(n)
Matrix-Chain Multiple

• Matrix multiply is associative
 • \((AB)C=A(BC)\)
 • Computation cost can be different (dimensions differ)
• Problem: How to optimize placement of parentheses to minimize cost
Optimal Structure

- Consider the product: $A_1A_2...A_n$
- Let A_{ij} denote the product $A_iA_{i+1}...A_{j-1}A_j$
- We want to choose k such that computing $A_{ik}A_{k+1}j$ is the minimal way to compute A_{ij}
- Let $M(i,j)$ denote the cost of computing A_{ij}
- $M(i,j)=0$ if $i=j$ or $\min(M(i,k)+M(k+1,j)+p_{i-1}p_kp_j)$ for $i\leq k<j$ if $i<j$
Recursive Procedure

\[M(i, j) \]

if \(i = j \)
 then return 0
else
 \[\min = M(i, i) + M(i+1, j) + p_{i-1}p_ip_j \]
 for \(k <- i+1 \) to \(j-1 \)
 if \(\min > M(i, k) + M(k+1, j) + p_{i-1}p_kp_j \)
 \[\min = M(i, k) + M(k+1, j) + p_{i-1}p_kp_j \]
 return \(\min \)
Problem

- This recursive implementation is expensive
- We need to cache $M(i,j)$’s instead of re-computing them
- Can compute from the bottom up
Longest Common Subsequence

• Consider the sequences X={A, B, C, B, D, A, B}. A subsequence of X is Y={A, C, D, A, B}.
• Subsequences have a subset of the elements in order
• Formally, given X=<x_1, x_2, ..., x_m>, another sequence Z=<z_1, z_2, ..., z_k> is a subsequence of X if there exist a strictly increasing sequence <i_1, i_2, ..., i_k> such that for all j=1, 2, ..., k, x_n=z_j where n=i_j
Problem

• Given two sequence X and Y, what is the longest common subsequence
• Naive approach: compute all subsequences of X and Y, find the long sequence in the intersection
Structure of the solution

Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences. Let $Z = \langle z_1, z_2, ..., z_k \rangle$ be a LCS of X and Y.

1. If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is a LCS of X_{m-1} and Y_{n-1}

2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is a LCS of X_{m-1} and Y

3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is a LCS of X and Y_{n-1}
Recursive Solution

c[i,j]=0 if i=0 or j=0

c[i-1, j-1] +1 if i,j>0 and x_i=y_j

max(c[i,j-1], c[i-1,j]) if i,j>0 and x_i≠y_j

• Compute c[i,j] table bottom up
Optimal Binary Search Trees

- Want to optimize average search time for binary search trees
- Some searches may be more common
- Not all search terms may be in the tree - want to optimize for failed searches also
Problem

input n keys $K = \langle k_1, k_2, ..., k_n \rangle$
n+1 dummy keys $D = \langle d_0, d_1, ..., d_n \rangle$
$d_0 < k_1 < d_1 < k_2 < ... < k_n < d_n$
Dummy key d_i represents all searches between k_i and k_{i+1}
Probability of search for k_i is p_i
Probability of search for d_i is q_i
Cost
Structure

• Subtree will contain keys in contiguous rank $k_i, ..., k_j$ for some $1 \leq i \leq j \leq n$.
• Dummy keys $d_{i-1}, ..., d_j$ must be leaves.
• Optimal structure - both sub-trees are optimal.
• Cost increase of lowering subtree one level.

$$e[i, j] = q_{i-1} \quad \text{if } j = i-1$$
$$= \min\{e[i, r-1] + e[r+1, j] + w(i, j)\} \quad \text{if } i \leq r \leq j$$