Lecture 9: Overview

- Single Source Shortest Path
Problem

• Single starting vertex
• Find shortest path to all other vertices
Initialization

• All algorithms in chapter use same basic strategy: relaxation

INITIALIZE-SINGLE-SOURCE(G,s)

for each vertex v ∈ V[G]

\[d[v] \leftarrow -\infty \]

\[pr[v] \leftarrow \text{NIL} \]

\[d[s] \leftarrow 0 \]
Relax Procedure

RELAX(u, v, w)
1 if d[v] > d[u] + w(u, v)
2 then d[v] <- d[u] + w(u, v)
3 pr[v] <- u
Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i<- 1 to |V[G]| -1
do for each edge (u,v) ∈ E[G]
do RELAX(u, v, w)
5 for each edge (u,v) ∈ E[G]
do if d[v] > d[u] + w(u,v)
then return FALSE
8 return TRUE
Bellman-Ford Algorithm

- Works for edges with negative lengths
- Problem isn’t well-defined if there is a cycle of negative length
- If there is a negative cycle, algorithm returns false
- Complexity is $O(VE)$
Shortest Path in DAG

- If we consider nodes of a weighted DAG in topologically sorted order, we can compute shortest path in $\Theta(V+E)$ time

DAG-SHORTEST-PATHS(G, w, s)
1 topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE(G,s)
3 for each vertex u, taken in topologically sorted order
4 do for each vertex $v \in \text{Adj}[u]$
5 do RELAX(u, v, w)
Dijkstra’s Algorithm

DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S ← {}
3 Q ← V[G]
4 while Q ≠ {}
5 do u ← EXTRACT-MIN(Q)
6 S ← S ∪ {u}
7 for each vertex v ∈ Adj[u]
8 do RELAX(u, v, w)
Dijkstra’s Algorithm

• Idea is to keep distance estimates to neighbors of set S
• Add neighbor with shortest distance to set S and update other neighbors
• Doesn’t work with negative edges (they could affect distances in S)
• Exact runtime depends on implementation of priority queue
Difference Constraints and Shortest Paths

- Want to satisfy a set of constraints
 \[Ax \leq b \]
- Special case - difference constraints
- Each row of A contains one 1 and one -1
- Can set up as a shortest paths problem
- Variables are vertexes (plus special vertex \(v_0 \) which has zero weighted edges to all other vertices)
- Edges represent constraints
 - Constraint \(x_j - x_i \leq b_k \) is represented as an edge \((v_i, v_j)\) with weight \(b_k \) (correspond to triangle constraints)
- Use Bellman-Ford algorithm to satisfy