Math 205A

Partial solutions for homework assignment 6
Please email Josh Whitney at jwhitney {at} uci {dot} edu with any errors or oversights.

Exercise 1 (4.10) Let f be defined on an open interval (a, b) and assume $x \in (a, b)$. Consider the two statements

a) $\lim_{h \to 0} |f(x + h) - f(x)| = 0$;

b) $\lim_{h \to 0} |f(x + h) - f(x - h)| = 0$.

Prove that a) always implies b), and give an example in which b) holds but a) does not.

Solution. Suppose a) holds and let $\varepsilon > 0$ be given. Then there is some $\delta > 0$ for which

$$ |f(x + h) - f(x)| < \varepsilon / 2 $$

whenever $x + h \in (a, b)$ and $0 < |h| < \delta$. Therefore, if $x + h, x - h \in (a, b)$ and $0 < |h| < \delta$,

$$ |f(x + h) - f(x - h)| = |f(x + h) - f(x)| + |f(x - h) - f(x)| < \varepsilon / 2 + \varepsilon / 2 = \varepsilon. $$

This shows that $\lim_{h \to 0} |f(x + h) - f(x - h)| = 0$, which is b).

Let

$$ f(x) = \begin{cases} 1 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases} $$

Then in this case $(a, b) = \mathbb{R}$ and

$$ \lim_{h \to 0} |f(0 + h) - f(0 - h)| = 0 $$

since $f(0 + h) = 1$ for every $h \neq 0$. On the other hand,

$$ \lim_{h \to 0} |f(0 + h) - f(0)| = 1. $$

Exercise 2 (4.16) Let f, g, and h be defined on $[0, 1]$ as follows:

- $f(x) = g(x) = h(x) = 0$, whenever x is irrational
- $f(x) = 1$ and $g(x) = x$, whenever x is rational
- $h(x) = 1/n$, if x is the rational number m/n (in lowest terms)
- $h(0) = 1$.

Prove that f is not continuous anywhere in $[0, 1]$, that g is continuous only at $x = 0$, and that h is continuous only at the irrational points of $[0, 1]$.

Proof. We prove here only the statement about h. The statements about f and g can be proved using a similar argument which is a little easier. First, let m/n be a rational number. Then $h(m/n) = 1/n$. Let $\varepsilon = 1/(2n)$. Then for each $\delta > 0$ there is some irrational number $\xi \in B(m/n, \delta) \cap [0, 1]$ by the density of the irrationals in the reals. We have

$$ |h(m/n) - h(\xi)| = 1/n \geq 1/(2n). $$

Therefore, h is not continuous at m/n.

Let x be an irrational number and let $\varepsilon > 0$ be given. Let $n \in \mathbb{Z}^+$ be such that $1/n < \varepsilon$. Let $S = \{p/q : 0 \leq p \leq q$ and $1 \leq q \leq n\}$. Since S is a finite set, we can define

$$ \delta = \frac{1}{2} \min_{p/q \in S} ((p/q - x)). $$

Let $y \in [0, 1]$ with $0 < |x - y| < \delta$. If $y \in \mathbb{Q}^c$ then $|f(x) - f(y)| = 0 < \varepsilon$. Otherwise, write $y = p/q$. Then by the way we constructed δ, y cannot have denominator less or equal n, for then $y \in S$. Hence, $q \geq n$ and so

$$ |f(x) - f(y)| = \frac{1}{q} \leq \frac{1}{n} < \varepsilon, $$

completing the proof. □
Exercise 3 (4.21) Let \(f : S \to \mathbb{R} \) be continuous on an open set \(S \) in \(\mathbb{R}^n \), assume that \(p \in S \), and assume that \(f(p) > 0 \). Prove that there is an \(n \)-ball \(B(p;r) \) such that \(f(x) > 0 \) for every \(x \) in the ball.

Proof. Consider the set \(V = \{(f(p)/2, 2f(p))\} \subseteq \mathbb{R} \), which is open in \(\mathbb{R} \). Let \(U = f^{-1}(V) \). Then by the continuity of \(f \), \(U \) is open in \(S \) which implies \(U \) is open in \(\mathbb{R}^n \). Now, \(p \in U \) so there is some \(r > 0 \) for which \(B(p;r) \subseteq U \). Therefore, \(f(B(p;r)) \subseteq V \), which is to say that \(f(x) \in (f(p)/2, 2f(p)) \) for each \(x \in B(p;r) \). In particular, \(f(x) > 0 \) for each \(x \in B(p;r) \).

Exercise 4 (4.23) Given a function \(f : \mathbb{R} \to \mathbb{R} \), define two sets \(A \) and \(B \) in \(\mathbb{R}^2 \) as follows:

\[
A = \{(x, y) : y < f(x)\}, \quad B = \{(x, y) : y > f(x)\}.
\]

Prove that \(f \) is continuous on \(\mathbb{R} \) if, and only if, both \(A \) and \(B \) are open subsets of \(\mathbb{R}^2 \).

Proof. Suppose first that \(f \) is continuous on \(\mathbb{R} \). Consider the function \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) defined by \(g(x, y) = (f(x), y) \). We claim \(g(x) \) is continuous on \(\mathbb{R}^2 \). Let \(\varepsilon > 0 \) be given, and let \((x_0, y_0) \in \mathbb{R}^2 \). Let \(\delta \) be small enough so that \(\delta < \varepsilon/2 \) and \(|f(x) - f(x_0)| < \varepsilon/2 \) whenever \(x \in \mathbb{R} \) and \(0 < |x - x_0| \leq \delta \). If \((x, y) \in \mathbb{R}^2 \) with \(0 < \|(x, y) - (x_0, y_0)\| < \delta \), then in particular \(|x - x_0| < \delta \) and \(|y - y_0| < \delta < \varepsilon/2 \) so

\[
\|g(x, y) - g(x_0, y_0)\| = \sqrt{(f(x) - f(x_0))^2 + (y - y_0)^2} < \varepsilon/\sqrt{2} < \varepsilon.
\]

Now, define \(h : \mathbb{R}^2 \to \mathbb{R} \) by \(h(x, y) = x - y \). Then \(h \) is continuous. Notice that \(B = (h \circ g)^{-1}((0, \infty)) \) and \(A = (h \circ g)^{-1}((\infty, 0)) \), so \(B \) and \(A \) are both open by the continuity of \(h \circ g \) and the fact that \((0, \infty) \) and \((-\infty, 0) \) are open.

The converse was proved in discussion. \(\blacksquare \)