Math 205A
Partial solutions for homework assignment 8
Please email Josh Whitney at jwhitney {at} uci {dot} edu with any errors or oversights.

Exercise 1 (4.40) If \(x \) is a point in a metric space \(S \), let \(U (x) \) be the component of \(S \) containing \(x \). Prove that \(U (x) \) is closed in \(S \).

Proof. From exercise 4.39 which we proved in discussion, \(\overline{U} (x) \) is also a connected subset of \(S \) containing \(x \). Since \(U (x) \) is the union of all such subsets, \(U (x) \subset U (x) \) so \(U (x) \) is closed. ■

Exercise 2 (4.48) Let \(S \) be an open connected set in \(\mathbb{R}^n \). Let \(T \) be a component of \(\mathbb{R}^n - S \). Prove that \(\mathbb{R}^n - T \) is connected.

Proof. First we notice that

\[
\mathbb{R}^n - T = S \cup (\mathbb{R}^n - S - T) = S \cup \left(\bigcup_{x \in \mathbb{R}^n - S - T} U (x) \right)
\]

where each \(U (x) \) is the connected component of \(x \) in \(\mathbb{R}^n - S \) (the equality holds here because \(T \) is a component of \(\mathbb{R}^n - S \)). We claim that \(S \cap U (x) \) is nonempty for each \(x \in \mathbb{R}^n - S - T \). To see this, suppose \(S \cap U (x) \) is empty for some \(x \in \mathbb{R}^n - S - T \). Then \(U (x) \) is a closed subset of \(\mathbb{R}^n - S \) by exercise 4.40, and \(\mathbb{R}^n - S \) is closed in \(\mathbb{R}^n \) by the assumption that \(S \) is open. Therefore, \(U (x) \) is closed in \(\mathbb{R}^n \). On the other hand, \(\mathbb{R}^n - S \subset \mathbb{R}^n - S \), so \(U (x) \) must also be a component of \(\mathbb{R}^n - S \). Thus, \(U (x) \) is open in \(\mathbb{R}^n - S \) by the proof of theorem 4.44. Since \(\mathbb{R}^n - S \) is open in \(\mathbb{R}^n \), \(U (x) \) is open in \(\mathbb{R}^n \), contradicting that \(\mathbb{R}^n \) is connected and establishing the claim.

To finish the proof, let \(f \) be a two valued function on \(\mathbb{R}^n - T \) and let \(a, b \in \mathbb{R}^n - T \). We must show \(f (a) = f (b) \). If \(a \) and \(b \) are both in \(S \) then we are done by the connectedness of \(S \). Next, suppose \(a \in S \) but \(b \in U (x) \) for some \(x \in \mathbb{R}^n - S - T \). Let \(c \in U (x) \cap S \). Then \(f (c) = f (a) \) by continuity and \(f (c) = f (b) \) by the connectedness of \(U (x) \). If \(a \in U (x) \) and \(b \in U (y) \), then \(f (a) = f (c) = f (b) \) for any \(c \in S \) by what we just showed. ■

Exercise 3 (4.52) Assume that \(f \) is uniformly continuous on a bounded set \(S \) in \(\mathbb{R}^n \). Prove that \(f \) must be bounded on \(S \).

Proof. Since \(f \) is uniformly continuous on \(S \), there is some \(\delta > 0 \) for which \(|f (x) - f (y)| < 1 \) whenever \(x, y \in S \) and \(|x - y| < \delta \). Since \(S \) is bounded, \(S \) is contained in some closed ball \(B \) which, by compactness, we can cover with finitely many balls of radius \(\delta \). Therefore, we can cover \(S \) with finitely many balls of radius \(\delta \), say \(B_1, \ldots, B_n \). Assume that each \(B_i \) contains at least one point of \(S \) (if not, simply remove that ball from the list). Choose one point \(x_i \in S \) from each ball \(B_i \) arbitrarily and let \(M = \max_{i=1,\ldots,n} f (x_i) \). If \(x \in S \), then \(|x - x_i| < \delta \) for some \(1 \leq i \leq n \) which implies

\[
|f (x) - f (x_i)| \leq 1.
\]

Hence, \(f (x) \leq 1 + f (x_i) \leq 1 + M \). Thus, \(|f (x)| \leq M + 1 \) for each \(x \in S \), completing the proof. ■

Exercise 4 (4.65) Let \(f \) be strictly increasing on a subset \(S \) of \(\mathbb{R} \). Assume that the image \(f (S) \) has one of the following properties: \(f (S) \) is open, \(f (S) \) is connected, or \(f (S) \) is closed. Prove that \(f \) must be continuous on \(S \).

Exercise 5 (4.67) Refer to exercise 4.66 and let \(C (S) \) denote the subset of \(B (S) \) consisting of all functions continuous and bounded on \(S \), where now \(S \) is a metric space.

1. Prove that \(C (S) \) is a closed subset of \(B (S) \).
2. Prove that the metric space \(C (S) \) is complete.

Proof.
1. Let f be in the complement of $C(S)$ in $B(S)$. Then f is not continuous at some point $s_0 \in S$. Therefore, there exists some $\varepsilon_0 > 0$ such that for each $\delta > 0$ there is some $s \in S$ with $d(s, s_0) < \delta$ but $|f(s) - f(s_0)| \geq \varepsilon_0$. Let $r = \varepsilon_0/4$ and let $g \in B(f;r)$. Then $|g(x) - f(x)| \leq \varepsilon_0/4$ for each $x \in S$. Let $\delta > 0$ be given. Then there is some $s \in S$ with $d(s, s_0) < \delta$ but $|f(s) - f(s_0)| \geq \varepsilon_0$. Thus, repeated application of the reverse triangle inequality gives

$$|g(s) - g(s_0)| \geq | |g(s_0) - f(s)| - |g(s) - f(s)||$$

$$\geq | |f(s_0) - f(s)| - |g(s_0) - f(s_0)| - |g(s) - f(s)|| \geq \varepsilon_0/2.$$

Therefore, g is not continuous at s_0 and hence $g \in C(S)$. We have then shown that $B(f;r) \subset C(S)^C$ which means $C(S)$ is closed in $B(S)$.

2. We know that $C(S)$ is a closed subset of $B(S)$, the latter of which is complete by 4.66.b. The statement then follows from the fact that a closed subset of a complete metric space is complete.

Remark 6 The following question was posed to me after discussion today. Let $S = [0, 1]$ and take $f_n(x) = x^n$ for each $n \in \mathbb{Z}^+$. Then $f_n(x)$ is a sequence in $C(S)$. The potential problem here is that $f_n(x)$ converges pointwise to a function f not in $C(S)$, which would contradict that $C(S)$ is closed as we showed above if $f_n \rightarrow f$ in the sup norm. Notice, however, that this is not the case. that while $f_n(x)$ converges pointwise to f, it does not converge to f in the sup norm. Indeed, $\|f_n - f\| \geq 1/2$ for each $n \in \mathbb{Z}^+$, so while $f_n(x)$ converges pointwise to f, it does not converge to f in the sup norm.