3. What is the order of \((1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8 \ 9)\) in \(S_{11}\)?

This is a cycle decomposition (i.e., a product of disjoint cycles), so the order is \(\text{lcm}\{2, 3, 4\} = 12\).

4. What is the order of the element \(\overline{52}\) in the group \((\mathbb{Z}/64\mathbb{Z}, +)\)?

Since \(\overline{52}\) is \(52 \cdot -1\), and \(-1\) has order 64, the order of \(\overline{52}\) is \(\frac{64}{\gcd(64, 52)} = 64/4 = 16\).

5. For the (cyclic) group \((\mathbb{Z}/9000\mathbb{Z}, +)\), find the number of generators, and list two of them.

The generators are the elements relatively prime to 9000. Two of them are \(1\) and \(8999\) (which is \(-1\)). The number is \(\varphi(9000)\). Since \(9000 = 2^3 \cdot 3^2 \cdot 5^3\), we have \(\varphi(9000) = 2^2 (2-1) \cdot 3(3-1) \cdot 5^2 (5-1) = 4 \cdot 6 \cdot 25 \cdot 4 = 2400\).

6. Prove that if \(p\) is prime, \(n \in \mathbb{Z}^+\), \(G\) is a group, and \(|G| = p^n\), then \(|Z(G)| > 1\).

See class notes. Note that you need to state clearly that you are using the Class Equation, and what the \(g_i\)'s are in that.

7. Classify groups of order 6, up to isomorphism. (Give a proof.)

Note: This was homework exercise 10 on p.122 (which is before the Class Equation, so it’s not necessary to use that).

Answer: \(\mathbb{Z}_6\) and \(S_3\).

Proof: Note first that \(\mathbb{Z}_6\) and \(S_3\) are not isomorphic, since \(\mathbb{Z}_6\) is abelian while \(S_3\) is non-abelian.

Case 1: \(G\) is abelian. By Cauchy’s Theorem for abelian groups, \(G\) has an element \(x\) of order 2 and an element \(y\) of order 3. Let \(r\) denote the order of \(xy\). Then \(e = (xy)^r = x^r y^r\), so \(x^r = (y^{-1})^r \in \langle x \rangle \cap \langle y \rangle = \{e\}\) (since by Lagrange’s Theorem, \(|\langle x \rangle \cap \langle y \rangle|\) divides both 2 and 3, and thus is 1). Thus 2 divides
and 3 divides \(r \). So 6 divides \(r \). Since \(e = (xy)^6 \), we have \(|xy| = 6 \), so \(xy \) must generate \(G \), so \(G \) is cyclic and \(G \cong \mathbb{Z}_6 \).

(Instead of using Cauchy’s Theorem for abelian groups, you could have done the following. Suppose \(G \) is abelian and does not have an element of order 6. Then each of the (5) non-identity elements has order 2 or 3. If \(G \) has 2 elements of order 2, then they generate a Klein-4 subgroup of \(G \); but a group of order 6 can’t have a subgroup of order 4, by Lagrange; so \(G \) has at most 1 element of order 2. Since the elements of order 3 pair off (\(g \) pairs with \(g^{-1} = g^2 \)), we can’t have all 5 non-identity elements having order 3; at least (and thus exactly) one has order 2. Thus \(G \) has elements of orders 2 and 3.)

Case 2: \(G \) is not abelian. It follows from Lagrange’s Theorem that \(|G/Z(G)| = 1, 2, 3, \) or \(6 \). If \(|G/Z(G)| = 1, 2, \) or \(3 \), then \(G/Z(G) \) is cyclic, so \(G \) is abelian by a homework problem. Thus, \(|G/Z(G)| = 6 \), so \(Z(G) = \{e\} \).

Since \(G \) is not abelian, \(G \) is not cyclic, so all non-identity elements have order 2 or 3. Since the elements of order 3 pair off (\(g \) pairs with \(g^{-1} = g^2 \)), we can’t have all 5 non-identity elements of order 3; at least one, call it \(\sigma \), has order 2. Let \(H = \langle \sigma \rangle \). We first show \(H \) is not normal in \(G \).

If \(H \triangleleft G \), then for all \(g \in G \), we have \(g\sigma g^{-1} \in H = \{e, \sigma\} \).

Since \(\sigma \neq e \), we have \(g\sigma g^{-1} \neq e \), so \(g\sigma g^{-1} = \sigma \), so \(g\sigma = \sigma g \) for all \(g \in G \), so \(\sigma \in Z(G) \), contradicting that \(Z(G) = \{e\} \). Thus, \(H \) is not normal in \(G \).

Now \(G \) acts by left multiplication on the set \(A \) of left cosets of \(H \) in \(G \). Let \(\pi : G \to S_A \cong S_3 \) denote the associated permutation representation. Then \(\ker(\pi) \) is a normal subgroup of \(G \) contained in \(H \). Since \(|H| = 2 \) and \(H \) is not normal in \(G \), we must have \(\ker(\pi) = \{e\} \), so \(\ker(\pi) \) is injective. Since \(|G| = 6 = |S_3| \), \(\pi \) gives an isomorphism from \(G \) onto \(S_3 \), as desired.