Academic Honesty Policy. Academic honesty is strictly enforced on quizzes, exams, and other aspects of this course. Academic dishonesty will result in a failing grade in the class and a letter in the student's file. Activities constituting academic dishonesty include:

Cheating
- Copying from others during an examination.
- Communicating exam answers with other students during an examination.
- Offering another person's work as one's own.
- Taking an examination for another student or having someone take an examination for oneself.
- Tampering with an examination after it has been corrected, then returning it for more credit.
- Using unauthorized materials, prepared answers, written notes, or concealed information during an examination.

Dishonest Conduct
- Stealing or attempting to steal an examination or answer key from the instructor.
- Allowing another student to copy off of one's own work during a test.

Collusion
- Any student who knowingly or intentionally helps another student perform any of the above acts is subject to discipline for academic dishonesty.

I understand and will abide by this academic honesty policy: _______________________________ (signature)

1. Write the appropriate LETTERS in the spaces provided. (4 pts)
 a. Rank the following in order of increasing water solubility: \(c < b < q \)
 (a) CH$_3$CH$_2$CH$_2$CH$_2$CO$_2$H
 (b) CH$_3$CH$_2$CH$_2$CO$_2$CH$_3$
 (c) CH$_3$CH$_2$CH$_2$CH$_3$

 b. Rank the following in order of increasing boiling point: \(b < c < q \)
 (a) CH$_3$(CH$_2$)$_7$CH$_3$
 (b) (CH$_3$)$_2$CHCH(CH$_3$)$_2$
 (c) CH$_3$(CH$_2$)$_4$CH$_3$

2. Circle and label the three different types of functional groups in the analgesic Davron (below). (Smith, 3.15a, 3 pts)

 ![Diagram of Davron molecule with labeled functional groups]

 ester group aromatic rings amino group

3. What types of intermolecular forces does cyclohexanecarboxylic acid (below) exhibit with itself? (Smith, 3.17a, 3 pts)

 Fill in the blanks: Van der Waals, dipole-dipole, and hydrogen bonding

 ![Diagram of cyclohexanecarboxylic acid molecule]