Lecture 1: Overview

- Course administration
 - Course web pages
- Getting started
 - Obtain your UCInetID
 - Obtain an account on the EECS servers
 - Log into the server
- Algorithm Analysis
Course Administration

• Course web pages online at http://eee.uci.edu/06f/18090/
 • Instructor information
 • Course description and contents
 • Course policies and resources
 • Course schedule
 • Homework assignments
 • Course communication
 • Mailing list (announcements)
 • Email (administrative issues)
Getting Started

- Obtain an account on the EECS servers
- Your working account in EECS
Getting Started

• Log into the server
 • Terminal with SSH protocol (secure shell)
 • EECS servers
 • east.eecs.uci.edu
 • newport.eecs.uci.edu
 • malibu.eecs.uci.edu
 • User name, password
Java compilation

- Programming assignments should be completed in Java
- To compile a file into a class file
 javac file.java
- To execute a class file
 java file.class
- Java documentation available at
 http://java.sun.com/
Alternate Programming Environments

- You can use any platform you wish to write course assignments
- You can install Java on your own machine (MS Windows, Macintosh, Linux)
- You can use any text editor to write your code in
- But check that your assignments run on the Sun machines before turning them in
What is an Algorithm?

- An algorithm:
 - Takes an input (a value or set of values)
 - Produces an output (a value of set of values)
 - Terminates
 - Output satisfies some correctness property (the output of a sorting algorithm is sorted)
Why take this class?

- Fundamental - cross cutting across all areas of computer science
- Analysis aspect - need to know how long an algorithm takes to execute (will your code work with 1 million entries, 1 billion?), how to classify the difficult of problems
- Provides many solutions for a given problems
- Many applications of a given solutions
Example Algorithm: Sorting n integers

• Problem statement:
 • Input: An array \(A = \{a_1, a_2, ..., a_n\} \)
 • Output: An array \(A' = \{a'_1, a'_2, ..., a'_n\} \) such that \(a_i \leq a_{i+1} \) for \(1 \leq i < n \).

• Many different possible algorithms to solve this problem
 • Different algorithms can have very different runtimes
 • Important to understand behavior of algorithm (can it handle large inputs)?
Analysis of Execution Time

• Use algorithm analysis to characterize behavior of algorithms

• Assumptions:
 • RAM (random access memory) model - all memory accesses are constant time
 • Sequential instruction execution (single processor)
 • Basic instructions are constant time (add, multiple, divide, subtract, compares, ...)

Algorithm Runtime

- Could measure it, but want a formula $T(n)$ where n is the problem size so we can predict it
- Want to factor out machine details as scaling factors
- Worst case, best case, average case
Algorithm Runtime

search(A, key)
1. for i ← 1 to length[A]
2. if A[i]=key
3. then return i

Searches for key in the array A and returns the index of the key
Best Case Algorithm Runtime

```
search(A, key)
cost times
1. for i ← 1 to length[A] c₁ 1
2. if A[i]=key c₂ 1
3. then return i c₃ 1

T(n)=c₁+c₂+c₃
```
Worst Case Algorithm Runtime

search(A, key)\)

<table>
<thead>
<tr>
<th>Cost</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>n</td>
</tr>
<tr>
<td>c_2</td>
<td>n</td>
</tr>
<tr>
<td>c_3</td>
<td>1</td>
</tr>
</tbody>
</table>

$$T(n) = n(c_1 + c_2) + c_3$$
Average Case Algorithm Runtime

search(A, key) cost times
1. for i ← 1 to length[A] \(c_1\) \(n/2\)
2. if A[i]=key \(c_2\) \(n/2\)
3. then return i \(c_3\) 1

\[T(n) = \frac{n}{2}(c_1+c_2)+c_3\]
Asymptotic Notation

- The coefficients c_1, c_2, \ldots depend on details of the machine.
- Typically we just care about how fast the runtime grows with increasing input size.
 - Coefficients aren’t important.
 - Lower order terms aren’t important.
Big-O Notation

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.
- Informally, if $f(n)$ is $O(g(n))$, $f(n)$ grows no faster than $g(n)$.
Big-O Notation for Polynomials

- If f(n) is a polynomial, then f(n) is $O(n^d)$ where d is the polynomial degree of f(n)
 - Drop lower-order terms
 - Drop constant factors
- Example
 - $3n^2+2n$ is $O(n^2)$
Other notations

- **big-Omega (lower bound)**
 - $f(n)$ is $\Omega(g(n))$ if there are constants $c>0$ and $n_0 \geq 1$ such that $f(n) \geq cg(n)$ for $n \geq n_0$

- **big-Theta (tight bound)**
 - $f(n)$ is $\Theta(g(n))$ if there are constants $c>0$, $c'>0$, and $n_0 \geq 1$ such that $cg(n) \leq f(n) \leq c'g(n)$ for $n \geq n_0$

- **little-oh (strict upper bound)**
 - $f(n)$ is $o(g(n))$ if for any constant $c>0$ there is a constant $n_0 \geq 0$ such that $f(n) \leq cg(n)$ for $n \geq n_0$

- **little-omega (strict lower bound)**
 - $f(n)$ is $\omega(g(n))$ if for any constant $c>0$ there is a constant $n_0 \geq 0$ such that $f(n) \geq cg(n)$ for $n \geq n_0$