Lecture 15

- Final
Chapter 1

- Algorithm Analysis
- Need to know:
 - How to compute complexity of an algorithm.
 - Big O/Theta/Omega notation
 - Complexities of various algorithms from class
Chapter 2

- Basic Data Structures
- Stacks & Queues
 - Linked structure implementation
 - Array-based implementation
- Vectors, Lists, & Sequences
 - Implementations
 - Interfaces
Cont’d

- Trees
 - Definitions - height, depth, proper, binary
 - Classes of nodes - internal, external
 - Traversals - in-order, pre-order, post-order
- Priority Queues
 - Interface
 - Implementations
- Heaps
 - Heap properties - what is a heap
 - Implementation
Cont’d

- Dictionaries
 - Interfaces
 - Implementations
- Hash tables
 - Interfaces
 - Implementations
Chapter 3

- Binary Search Trees
 - Basic operations (insert, remove, search)
 - Complexity
- Skip lists
Chapter 4

- Heap Sort
- Merge Sort
- Quick Sort - be aware of worst case behavior
- Radix Sort
- Lower bound on comparison sort complexity
- Advantages/disadvantages of each sorting algorithm
- Selection problem (find the ith smallest item in list of unsorted items)
Chapter 5

- Greedy Algorithms
 - Fractional Knapsack Problem
 - Activity Selection Problem
- Dynamic programming - know the various results
 - Matrix Chain Multiplication Problem
 - 0-1 Knapsack Problem
Chapter 6

• Graphs - basic definitions
 DAGS/Directed/Undirected/...
• Data Structures to store graph (adjacency list/matrixes)
• Directed Graphs
• Depth First Search
• Breadth First Search
Chapter 7

• Single Source Shortest Path
 • Bellman Ford
 • Shortest path in DAG
 • Dijkstra
• All Pairs Shortest Path
 • Matrix-base Algorithm
 • Floyd-Warshall Algorithm
 • Johnson’s Algorithm
• Minimum Spanning Trees
 • Prim’s
 • Baruvka’s
 • Kruskal’s
Chapter 8

- Network Flows
 - Statement of problem
 - Structure of graph (Source can’t have incoming edges, Sink can’t have outgoing edges)
 - Network Cut Definition
 - Theorem for Cuts, Augmenting Paths, and Max Flow
- Maximum Flow
 - Relation between network cut/max flow
 - Definitions
 - Ford Fulkerson Method
 - Edmonds-Karp Algorithm
- Maximum Bipartite Matching
Chapter 13

- P vs. NP
- NP Completeness
- NP Complete Problem
- Approximation Algorithms