Announcements
Binary Search Trees

- Store data in a tree
- Each node can have up to two child nodes
 - one left child
 - one right child
Binary Search Trees

- For balanced tree, we can search for n nodes for a key in $O(\log n)$ steps
Can we do better?

- Can we find a key/value pair in constant time?
Can we do better?

- For small keys, we could index into an array with the key, and return the corresponding element.
Can we do better?

• Doesn’t work for large key spaces, but what if we compute inputkey % sizeofarray as index?
Can we do better?

- Doesn’t work for large key spaces, but what if we compute `inputkey % sizeofarray`?
- Could potentially have a collision – two keys that correspond to the same array element.
Use linked list of items

- Can use an array that points to linked lists of key/value pairs
Hash Table

- Components:
 - Hash function h that maps keys of a given type to integers in a fixed interval $[0, N-1]$
 - Example:
 $$h(x) = x \mod N$$
 - Can have Hash functions for strings, etc...
 - Comparison function
 - Tells us whether two keys are equivalent
 - An array of size N
Hash Function

- Can think of hash function as having two components
 - A mapping from keys \rightarrow integers
 - A (compression) mapping from integers \rightarrow $[0, N-1]$
- Goal is to get an even distribution of keys throughout the hash table array
- Can also use object pointer values if we want equality to mean the exact same object (not so good for integers)
Hash Functions for Objects with Many Fields

• If any object has many fields, we can compute a hash function for the object that combines these fields in some way

• Typically use
 • Summation
 • Exclusive OR
Polynomial Accumulation

- Partition the bits of the key into a sequence of components of fixed length (8, 16, or 32 bits)
 \[a_0a_1...a_{n-1}\]
- Evaluate the polynomial
 \[p(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1}\]
at fixed value \(x\)
- Use Horner’s rule for polynomial time evaluation
 \[p_0(x) = a_{n-1}\]
 \[p_i(x) = a_{n-i-1} + xp_{i-1}(x)\]
Idea:

- Data structure known as hash table
- Idea is to grow the array so that the linked lists are always short – gives constant time access to key/value pairs
- Hash function takes key (in this case an integer) and tells us what index in the array to look – in this case we use key % arraysize as the hash function
Search

- Looking for value corresponding to key=8
- First compute key % arraysize(6)=2
- Look in element 2 of array

```
2, 31
```

```
8,12
```
• Looking for value corresponding to key=8
• First compute key % arraysize(6)=2
• Look in element 2 of array
Search

- Look in element 2 of array
- Follow linked list until we find element with key=8
Search

- Follow linked list until we find element with key=8
- Found key=8, value=12
Search

- If we didn’t find it, then key/value pair isn’t in the hashtable
Adding a key/value pair

- Compute proper array element using the hash function
- Add key/value pair to beginning of the linked list for that element
Alternative Methods for Collision Handling

- Linear probing
 - Store item in next free cell
 - To search, keep looking at consecutive cells until you either find the key, an empty cell, or have wrapped around
 - Removals are complicated - have to use special value to indicate that spot is available but to probe past it
- Collisions can bunch up
Double Hashing

- Have a hash function that produces a series of values and place item in first available slot
- \((i+j \cdot d(k)) \mod N\) for \(j=0,1,\ldots,N-1\) where \(N\) is prime
- Function can’t have zero values
- Table size \(N\) must be prime to allow probing of all cells
Resizing Hashtables

- Typically, hashtable automatically resize themselves when linked lists begin to get long
 - Have to reallocate array
 - Rebuild linked list of key/value pairs for the new array
 - Free old array
Performance

- Worst case: everything falls into the same bin
- Searches, removals take $O(n)$ time
- Insertions may also take $O(n)$ time
- Load factor $\alpha = n/N$ - affects performance
- Can show that expected number of probes is $1/(1-\alpha)$ (for hashtables that store all items in array)
- Expected time is $O(1)$
Universal Hash Functions

• Idea - hash functions that produce a uniform flat distribution across the array
• Formally, for 0<=i,j<=M-1, Pr(h(i)=h(j)) <=1/N
• Choose p as a prime between M and 2M.
• Randomly select 0<a<p and 0<b<p, and define h(k)=(ak+b mod p) mod N