Math 227A take-home final exam

Due Fri, Dec 2, 5:00 pm, office Rowland Hall 540J

1. Consider the following nonlinear system (two-species competition):

\[
\begin{align*}
\dot{y}_1 &= r_1 y_1 \left(1 - \frac{y_1 + \alpha_{12} y_2}{K} \right), \\
\dot{y}_2 &= r_2 y_2 \left(1 - \frac{y_2 + \alpha_{21} y_1}{K} \right),
\end{align*}
\]

where \(r_i > 0 \) are the linear growth rates of the two species, \(K \) is the carrying capacity, and \(\alpha_{ij} > 0 \) describe how much each species influences the other species' growth (for \(i, j \in \{1, 2\} \)). (a) Find critical points and investigate their stability. (b) Fix the parameters \(r_1, r_2 \) and \(K \) and describe the bifurcations as you vary \(\alpha_{12} \) and \(\alpha_{21} \) one at a time. Draw the bifurcation diagrams. (c) Solve the ODEs numerically by using \(y_1(0) = 2, \ y_2(0) = 3, \ K = 200, \ r_1 = 1, \ r_2 = 1.5, \) and by picking the values for the parameters \(\alpha_{12} \) and \(\alpha_{21} \) before and after the bifurcation. Will the long-term behavior of the system be the same if you vary the initial conditions? Explain.

2. Consider the boundary value problem

\[u'' - u = e^x, \quad u(0) = 1, \quad u'(1) = 0. \]

(a) Solve the problem by finding the Green’s function. What is \(u'(0) \)?
(b) Set up the method of shooting: (i) Rewrite the problem as an initial value problem with \(u'(0) = c \). (ii) Solve the IVP numerically by using Mathematica or other program for several values of \(c \). For each particular value of \(c \), evaluate \(F(c) \equiv u'(1) \). (iii) Plot the \(F(c) \) as a function of \(c \) to show that equation \(F(c) = 0 \) has a root, \(F(c_*) = 0 \). (iv) Show that \(c_* \) (approximately) coincides with \(u'(0) \) found in (a).