Figure 1.26 The Immune System, 3rd ed. (© Garland Science 2009)
Figure 1.27 The Immune System, 3rd ed. (© Garland Science 2009)
Figure 1.11 The Immune System, 3ed. (© Garland Science 2009)
Figure 1.14 The Immune System, 3rd ed. (© Garland Science 2009)
Figure 1.12 The Immune System, 3ed. (© Garland Science 2009)
<table>
<thead>
<tr>
<th>Cell type</th>
<th>Proportion of leukocytes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophil</td>
<td>40–75</td>
</tr>
<tr>
<td>Eosinophil</td>
<td>1–6</td>
</tr>
<tr>
<td>Basophil</td>
<td><1</td>
</tr>
<tr>
<td>Monocyte</td>
<td>2–10</td>
</tr>
<tr>
<td>Lymphocyte</td>
<td>20–50</td>
</tr>
</tbody>
</table>

Figure 1.15 The Immune System, 3rd ed. (© Garland Science 2009)
Large reserves of neutrophils are stored in the bone marrow and are released when needed to fight infection.

Neutrophils travel to and enter the infected tissue, where they engulf and kill bacteria. The neutrophils die in the tissue and are engulfed and degraded by macrophages.
The “nude” mouse
Figure 1.19 The Immune System, 3rd ed. (© Garland Science 2009)
Venous blood returns to the heart

Naive lymphocytes arrive at lymph nodes in arterial blood

left subclavian vein

arterial blood

venous blood

draining lymph node

lymphatics

Pathogens from site of infection reach lymph nodes via lymphatics

infected peripheral tissue

Lymphocytes and lymph return to the blood via the lymphatics

Figure 1.20 The Immune System, 3ed. (© Garland Science 2009)
The lymph node

Figure 1.21 The Immune System, 3rd ed. (© Garland Science 2009)
Figure 1.22 The Immune System, 3ed. (© Garland Science 2009)