1 Solution to Problem 2-2

a. We need to show that the elements of A’ form a permutation of the elements of A.

b. Loop invariant: At the start of each iteration of the for loop of lines 2-4, \(A[j] = \min\{A[k]: j \leq k \leq n\} \) and the subarray \(A[j..n] \) is a permutation of the values that were in \(A[j..n] \) at the time that the loop started.

Initialization: Initially, \(j = n \), and the subarray \(A[j..n] \) consists of single element \(A[n] \). The loop invariant trivially holds.

Maintenance: Consider an iteration for a given value of \(j \). By the loop invariant, \(A[j] \) is the smallest value in \(A[j..n] \). Lines 3-4 exchange \(A[j] \) and \(A[j-1] \) if \(A[j] \) is less than \(A[j-1] \), and so \(A[j-1] \) will be the smallest value in \(A[j-1..n] \) afterward. Since the only change to the subarray \(A[j-1..n] \) is this possible exchange, and the subarray \(A[j..n] \) is a permutation of the values that were in \(A[j..n] \) at the time that the loop started, we see that \(A[j-1..n] \) is a permutation of the values that were in \(A[j-1..n] \) at the time that the loop started. Decrementing \(j \) for the next iteration maintains the invariant.

Termination: The loop terminates when \(j \) reaches \(i \). By the statement of the loop invariant, \(A[i] = \min\{A[k]: i \leq k \leq n\} \) and \(A[i..n] \) is a permutation of the values that were in \(A[i..n] \) at the time that that loop started.

c. Loop invariant: At the start of each iteration of the for loop of lines 1-4, the subarray \(A[1..i-1] \) consists of the \(i-1 \) smallest values originally in \(A[1..n] \), in sorted order, and \(A[i..n] \) consists of the \(n-i+1 \) remaining values originally in \(A[1..n] \).

Initialization: Before the first iteration of the loop, \(i = 1 \). The subarray \(A[1..i-1] \) is empty, and so the loop invariant vacuously holds.

Maintenance: Consider an iteration for a given value of \(i \). By the loop invariant, \(A[1..i-1] \) consists of the \(i \) smallest values in \(A[1..n] \), in sorted order. Part (b) showed that after executing the for loop of lines 2-4, \(A[i] \) is the smallest value in \(A[i..n] \), and so \(A[1..i] \) is now the \(i \) smallest values originally in \(A[1..n] \), in sorted order. Moreover, since the for loop of lines 2-4 permutes \(A[i..n] \), the subarray \(A[i+1..n] \) consists of the \(n-i \) remaining values originally in \(A[1..n] \).

Termination: The for loop of lines 1-4 terminates when \(i = n \), so that \(i-1 = n-1 \). By the statement of the loop invariant, \(A[1..i-1] \) is the subarray \(A[1..n-1] \), and it consists of the \(n-1 \) smallest values originally in \(A[1..n] \), in sorted order. The remaining element must be the largest value in \(A[1..n] \), and it is in \(A[n] \). Therefore, the entire array \(A[1..n] \) is sorted.

d. The running time depends on the number of iterations of the for loop of lines 2-4. For a given value of \(i \), this loop makes \(n-i \) iterations, and \(i \) takes on the values 1, 2, ..., \(n-1 \). The total number of iterations, therefore, is \(\sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i = n(n-1) - \frac{n(n-1)}{2} = \frac{n^2 - n}{2} \). Thus, the running time of bubble sort is \(\Theta(n^2) \) in all cases. The worst-case running time is the same as that of insertion sort.
2 Solution to Exercise 3.1-3

Let the running time be \(T(n) \). \(T(n) \geq O(n^2) \) means that \(T(n) \geq f(n) \) for some function \(f(n) \) in the set \(O(n^2) \). This statement holds for any running time \(T(n) \), since the function \(g(n) = 0 \) for all \(n \) is in \(O(n^2) \), and running times are always nonnegative. Thus, the statement tells us nothing about the running time.

3 Solution to Exercise 3.1-4

\(2^{n+1} = O(2^n) \), but \(2^{2n} \neq O(2^n) \).

To show that \(2^{n+1} = O(2^n) \), we must find constants \(c, n_0 > 0 \) such that
\[
0 \leq 2^{n+1} \leq c \cdot 2^n \text{ for all } n \geq n_0.
\]
Since \(2^{n+1} = 2 \cdot 2^n \) for all \(n \), we can satisfy the definition with \(c = 2 \) and \(n_0 = 1 \).

To show that \(2^{2n} \neq O(2^n) \), assume there exist constants \(c, n_0 > 0 \) such that
\[
0 \leq 2^{2n} \leq c \cdot 2^n \text{ for all } n \geq n_0.
\]
Then \(2^{2n} = 2^n \cdot 2^n \leq c \cdot 2^n \Rightarrow 2^n \leq c \). But no constant is greater than all \(2^n \), and so the assumption leads to a contradiction.