EECS 114:
Engineering Data Structures and Algorithms
Lecture 1

Brian Demsky

eecs114@newport.eecs.uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine
Lecture 1: Overview

• Course administration
 • Course web pages

• Getting started
 • Obtain your UCI netID
 • Obtain an account on the EECS servers
 • Log into the server

• Algorithm Analysis
Course Administration

- Course web pages online at http://eee.uci.edu/11f/18090/
 - Instructor information
 - Course description and contents
 - Course policies and resources
 - Course schedule
 - Homework assignments
 - Course communication
 - Mailing list (announcements)
 - Email (administrative issues)
Getting Started

• Obtain an account on the EECS servers
 • Your working account in EECS
Getting Started

- Log into the server
 - Terminal with SSH protocol (secure shell)
 - EECS servers
 - ladera.eecs.uci.edu
 - malibu.eecs.uci.edu
- User name, password
Java compilation

- Programming assignments should be completed in Java
- To compile a file into a class file
 javac file.java
- To execute a class file
 java file.class
- Java documentation available at http://java.sun.com/
Alternate Programming Environments

• You can use any platform you wish to write course assignments
• You can install Java on your own machine (MS Windows, Macintosh, Linux)
• You can use any text editor to write your code in
• But check that your assignments run on the Sun machines before turning them in
What is an Algorithm?

- An algorithm:
 - Takes an input (a value or set of values)
 - Produces an output (a value of set of values)
 - Terminates
 - Output satisfies some correctness property (the output of a sorting algorithm is sorted)
Why take this class?

• Fundamental - cross cutting across all areas of computer science
• Analysis aspect - need to know how long an algorithm takes to execute (will your code work with 1 million entries, 1 billion?), how to classify the difficult of problems
• Provides many solutions for a given problems
• Many applications of a given solutions
Other Reasons

• One in eight people in California is unemployed => You need to be competitive
• Interviewers for Computers Engineering jobs typically ask algorithms questions
• Why?
 • Easy to ask
 • Consider knowledge important in the work force
Example Algorithm: Sorting n integers

- Problem statement:
 - Input: An array $A=\{a_1, a_2, ..., a_n\}$
 - Output: An array $A'=\{a'_1, a'_2, ..., a'_n\}$ such that $a_i \leq a_{i+1}$ for $1 \leq i < n$.

- Many different possible algorithms to solve this problem
 - Different algorithms can have very different runtimes
 - Important to understand behavior of algorithm (can it handle large inputs)?
Analysis of Execution Time

• Use algorithm analysis to characterize behavior of algorithms

• Assumptions:
 • RAM (random access memory) model- all memory accesses are constant time
 • Sequential instruction execution (single processor)
 • Basic instructions are constant time (add, multiple, divide, subtract, compares, ...)

Algorithm Runtime

• Could measure it, but want a formula $T(n)$ where n is the problem size so we can predict it
• Want to factor out machine details as scaling factors
• Worst case, best case, average case
search(A, key)
1. for i ← 1 to length[A]
2. if A[i]=key
3. then return i

Searches for key in the array A and returns the index of the key
Best Case Algorithm Runtime

search(A, key)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Cost</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>for i ← 1 to length[A]</td>
<td>c_1</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>if A[i]=key</td>
<td>c_2</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>then return i</td>
<td>c_3</td>
<td>1</td>
</tr>
</tbody>
</table>

$T(n) = c_1 + c_2 + c_3$
Worst Case Algorithm Runtime

search(A, key) cost times
1. for i ← 1 to length[A] c_1 n
2. if A[i]=key c_2 n
3. then return i c_3 1

$T(n) = n(c_1+c_2)+c_3$
Average Case Algorithm Runtime

search(A, key)
cost
times
1. for i ← 1 to length[A] \(c_1\) \(n/2\)
2. if A[i]=key \(c_2\) \(n/2\)
3. then return i \(c_3\) 1

\[T(n) = \frac{n}{2}(c_1+c_2)+c_3\]
Asymptotic Notation

• The coefficients c_1, c_2, \ldots depend on details of the machine

• Typically we just care about how fast the runtime grows with increasing input size
 • Coefficients aren’t important
 • Lower order terms aren’t important
Big-O Notation

• Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.

• Informally, if $f(n)$ if $O(g(n))$, $f(n)$ grows no faster than $g(n)$.
Big-O Notation for Polynomials

- If \(f(n) \) is a polynomial, then \(f(n) \) is \(O(n^d) \) where \(d \) is the polynomial degree of \(f(n) \)
 - Drop lower-order terms
 - Drop constant factors
- Example
 - \(3n^2+2n \) is \(O(n^2) \)
Other notations

• big-Omega (lower bound)
 • $f(n) \in \Omega(g(n))$ if there are constants $c>0$ and $n_0 \geq 1$ such that $f(n) \geq cg(n)$ for $n \geq n_0$

• big-Theta (tight bound)
 • $f(n) \in \Theta(g(n))$ if there are constants $c>0$, $c'>0$, and $n_0 \geq 1$ such that $cg(n) \leq f(n) \leq c'g(n)$ for $n \geq n_0$

• little-o (strict upper bound)
 • $f(n) \in o(g(n))$ if for any constant $c>0$ there is a constant $n_0 \geq 0$ such that $f(n) \leq cg(n)$ for $n \geq n_0$

• little-omega (strict lower bound)
 • $f(n) \in \omega(g(n))$ if for any constant $c>0$ there is a constant $n_0 \geq 0$ such that $f(n) \geq cg(n)$ for $n \geq n_0$