Lecture 14: Overview

- NP-Completeness (Chapter 34)
CNF-SAT is NP-Complete

- CNF=Conjunctive normal form
 \((!x_1 + x_2 + x_4 + !x_7)(x_3 + !x_5)(!x_2 + x_4 + !x_6 + x_8)\)
- In NP - easy to see...given correct answer, can verify that a CNF problem has a solution in polynomial time
- NP-hard
 - Show by giving polynomial reduction procedure from Circuit satisfiability problems
Cont’d

• Idea: add more variables to circuit satisfiability problem
• Add one variable for the output of each gate
• Convert each gate into a if and only if clause
• Use truth table to convert these into CNF clauses
 • Write DNF formula for when the iff clause is false
 • Use De Morgan’s law to get CNF formula for clause
3-SAT is NP-Complete

- 3-SAT=Conjunctive normal form with 3 literals per clause
 \((!x_1+x_2+x_4)(x_3+!x_5+x_4)(!x_2+!x_6+x_8)\)
- In NP - easy to see...given correct answer, can verify that a CNF problem has a solution in polynomial time
- NP-hard
 - Show by giving polynomial reduction procedure from CNF-SAT
Reduction

• If the original clause was a single term $C_i=(a)$
 • Replace C_i with $S_i=(a+b+c)(a+!b+c)(a+b+!c)(a+!b+!c)$ where b and c are new variables not used anywhere else

• If the original clause contained two terms $C_i=(a+b)$
 • Replace C_i with $S_i=(a+b+c)(a+b+!c)$ where c is a new variable not used anywhere else
cont’d

• If the original clause contained three terms \(C_i = a + b + c \), just use it

 • \(S_i = a + b + c \)

• If the original clause contains more than three terms, \(C_i = a_1 + a_2 + a_3 + \ldots + a_k \) for \(k > 3 \), then we replace \(C_i \) with

 • \(S_i = (a_1 + a_2 + b_1)(\overline{b_1} + a_3 + b_2)(\overline{b_2} + a_4 + b_3) \ldots (\overline{b_{k-3}} + a_{k-1} + a_k) \), where \(b_1, b_2, \ldots, b_{k-1} \) are new variables not used anywhere else
Vertex Cover is NP-Complete

• A vertex cover in an undirected graph is a subset C of the vertices of at most size k such that for each edge (v,w) we have $v \in C$ or $w \in C$

• It is NP (given C, straightforward to check this property for each edge)

• NP-Hard by giving a reduction from 3SAT problems to vertex covers
Reduction of 3SAT to VERTEX COVER

- For each variable x_i in the 3SAT formula, add two vertices to G. One labeled x_i and the other labeled $\neg x_i$. Also add the edge $(x_i, \neg x_i)$ to the graph. Vertex cover must include at least one of these vertices. (truth-setting component)

- For each clause $C_i=(a+b+c)$ in S, form a triangle consisting of three vertices i_1, i_2, and i_3 and the three edges (i_1, i_2), (i_2, i_3), and (i_3, i_1)

- Note that a vertex cover will have to include at least two of the vertices in the triangle

- Add the edges (i_1,a), (i_2,b), (i_3, c)

- Set $k=n+2m$ where $n=$number of variables, and $m=$ number of clauses
Cont’d

Solution to 3-SAT problem => Vertex Cover

• Look at each clause in 3-SAT problem
• SAT solution provides variable settings, construct set C that contains the vertices corresponding to these variables in the truth setting component
• If the SAT problem has a solution, the solution must make one or more of the literals in each clause true
• Choose exactly one of these true literals for each clause
• Include other two “clause” vertices in C
• =>Vertex covering of size n+2m
Cont’d

Vertex covering => satisfying assignment

- Must contain at least one vertex in each truth setting component
- Must contain at least two vertices in each clause setting component
- Leaves one edge incident to a clause-satisfying component that is not covered by a vertex in the clause-satisfying component
 - This edge must be covered by a literal vertex
 - Can assign covered literal vertices value of 1, and satisfy all clauses
Approximation Algorithms

- Problem:
 - Have NP-complete problem
 - Problem is important to solve
 - Can accept near optimal problem

- Approximation ratio
 - Let C be the cost of solution produced by an algorithm and C^* be the cost of an optimal solution
 - Define $\rho(n) \geq \max(C/C^*, C^*/C)$
 - We call such an algorithm a $\rho(n)$ approximation algorithm
Traveling salesman problem

• Complete undirect graph $G=(V,E)$ that has a nonnegative integer cost $c(u, v)$ associated with each edge (u, v) in E

• Want to find hamiltonian cycle of G with minimum costs

• Let $c(A)$ denote the total cost of the edges in the subset $A \subseteq E$

• We assume the triangle inequality

\[c(u, w) \leq c(u, v) + c(v, w) \]
Approx-TSP-Tour(G, c)

1 select vertex \(r \in V[G] \) to be the root vertex
2 compute minimum spanning tree \(T \) for \(G \) from root \(r \) using MST-Prim(G, c, r)
3 let \(L \) be the list of vertices visited in a pre-order tree walk of \(T \)
4 return the hamiltonian cycle \(H \) that visits the vertices in the order \(L \)
Traveling Salesman Problem

- Approx-TSP-Tour is a polynomial-time 2-approximation algorithm for the TSP problem with the triangle inequality
- Let H^* denote an optimal tour for the given set of vertices. Since a MST tree has the smallest total weight of any set of edges that connects all the vertices, the weight of the MST T is a lower bound on the optimal tour
- Full walk of T lists vertices when they are first visited and when they are returned to after a visit to the subtree
cont’d

- Since full walk traverses each edge of T exactly twice, we have
 - $c(W) = 2c(T)$
 - $c(W) \leq 2c(H^*)$
- Cost of W is within a factor of two of the cost of an optimal tour