Lecture 15

- Final
- Chapter 1-4
- Chapter 6-9
- Chapter 1—12
- Chapter 15-16
- Chapter 19
- Chapter 22-26
- Chapter 34
Analysis

- Algorithm Analysis
- Need to know:
 - How to compute complexity of an algorithm.
 - Big O/Theta/Omega notation
 - Complexities of various algorithms from class
Chapter 10-12

- Basic Data Structures
- Stacks & Queues
 - Linked structure implementation
 - Array-based implementation
- Vectors, Lists, & Sequences
 - Implementations
 - Interfaces
Cont’d

• Trees
 • Definitions - height, depth, proper, binary
 • Classes of nodes - internal, external
 • Traversals - in-order, pre-order, post-order

• Priority Queues
 • Interface
 • Implementations

• Heaps
 • Heap properties - what is a heap
 • Implementation
Cont’d

• Dictionaries
 • Interfaces
 • Implementations
• Hash tables
 • Interfaces
 • Implementations
Chapter 12

- Binary Search Trees
 - Basic operations (insert, remove, search)
 - Complexity
- Skip lists
Chapter 6/7/8/9

- Heap Sort
- Merge Sort
- Quick Sort - be aware of worst case behavior
- Radix Sort
- Lower bound on comparison sort complexity
- Advantages/disadvantages of each sorting algorithm
- Selection problem (find the ith smallest item in list of unsorted items)
Chapter 15/16

- Greedy Algorithms
 - Fractional Knapsack Problem
 - Activity Selection Problem
- Dynamic programming - know the various results
 - Matrix Chain Multiplication Problem
 - 0-1 Knapsack Problem
Chapter 22

- Graphs - basic definitions DAGS/Directed/Undirected/...
- Data Structures to store graph (adjacency list/matrixes)
- Directed Graphs
- Depth First Search
- Breadth First Search
Chapter 23, 24, 25

- Single Source Shortest Path
 - Bellman Ford
 - Shortest path in DAG
 - Dijkstra
- All Pairs Shortest Path
 - Matrix-base Algorithm
 - Floyd-Warshall Algorithm
 - Johnson’s Algorithm
- Minimum Spanning Trees
 - Prim’s
 - Baruvka’s
 - Kruskal’s
Chapter 26

- Network Flows
 - Statement of problem
 - Structure of graph (Source can’t have incoming edges, Sink can’t have outgoing edges)
 - Network Cut Definition
 - Theorem for Cuts, Augmenting Paths, and Max Flow
- Maximum Flow
 - Relation between network cut/max flow
 - Definitions
 - Ford Fulkerson Method
 - Edmonds-Karp Algorithm
- Maximum Bipartite Matching
Chapter 34

- P vs. NP
- NP Completeness
- NP Complete Problem