Announcements

- Skip Lists
Skip Lists

• Problem: searching a linked list takes tool long $O(n)$
• Want to search more quickly
• Solution: add more edges that let us skip through items
Skip List

S_2: -inf \rightarrow 5 \rightarrow +inf

S_1: -inf \rightarrow 5 \rightarrow 9 \rightarrow +inf

S_0: -inf \rightarrow 2 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow +inf
Skip List

- Consists of a series of lists \(\{S_0, S_1, \ldots, S_h\} \)
- \(S_0 \) contains every item
- For \(i = 1, \ldots, h-1 \) \(S_i \) contains a randomly selected subset of \(S_{i-1} \) plus \(-\infty\) and \(+\infty\)
- \(S_h \) contains only \(-\infty\) and \(+\infty\)
Positions

after(p) - position after p on the same level
before(p) - position before p on the same level
below(p) - position below p on the same tower
above(p) - position above p on the same tower
Searching for k in a Skip List

Finds the largest key $\leq k$

Start at top-most level in the left most position p
while $\text{below}(p)\neq\text{null}$ do
 $p\leftarrow\text{below}(p)$ //drop down
 while $\text{key}(\text{after}(p))\leq k$ do
 $p\leftarrow\text{after}(p)$ //scan forward
 return p
Skip List

Search for 7

S_0:
- inf \rightarrow 2 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow +inf

S_1:
- inf \rightarrow 5 \rightarrow 9 \rightarrow +inf

S_2:
- inf \rightarrow 5 \rightarrow +inf
Skip List

Search for 7

\[S_0 \]

- inf \quad 2 \quad 5 \quad 7 \quad 9 \quad +inf

\[S_1 \]

- inf \quad 5 \quad 9 \quad +inf

\[S_2 \]

- inf \quad 5 \quad +inf
Skip List

Search for 7
Skip List

Search for 7

S_2: \(-\infty\) - 5 - \(+\infty\)

S_1: \(-\infty\) - 5 - 9 - \(+\infty\)

S_0: \(-\infty\) - 2 - 5 - 7 - 9 - \(+\infty\)
Skip List

Search for 7

\[
\begin{align*}
S_2 & : -\infty \rightarrow 5 \rightarrow +\infty \\
S_1 & : -\infty \rightarrow 5 \rightarrow 9 \rightarrow +\infty \\
S_0 & : -\infty \rightarrow 2 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow +\infty
\end{align*}
\]
Skip List

Search for 7

S_2:
- inf --> 5 --> +inf

S_1:
- inf --> 5 --> 9 --> +inf

S_0:
- inf --> 2 --> 5 --> 7 --> 9 --> +inf
Insertion of k

p=Search for k using search procedure
Add k after item p at bottom level
while random()<1/2 do
 while above(p)=null do
 p<-before(p)
 p<-above(p)
 insert after item p at next higher level
Removal of k

1. Find k
2. Remove k from bottom level
3. Look at next level up
4. If k is present in this level, remove k from this level otherwise exit
5. Goto 3
Cost

• Expected height

Each level has half the expected number of entries as the previous one

\[P_i \leq n/2^i \]

⇒ Expected number of levels is \(O(\log(N)) \)

Book has more formal reasoning
Search Time

- Outer loop executes $O(h)$ which with high likelihood is $O(\log n)$
- Likely to make $O(1)$ operations on given level
- Only considering keys on level i between the current key and the next greater one on level $i+1$
- Half of these keys in the range $[k, \text{next}(k \text{ on level } i+1)]$ should appear in level $i+1$ and only k and $\text{next}(k \text{ on level } i+1)$
- Expect to scan small constant number of keys on each level $= O(1)$
- Total search $O(\log n)$
Space Usage

- Bottom level \(n \)
- Next level \(n/2 \)
- Next level \(n/2^2 \)
- Sum of \(n+n/2+n/4...=n(1+1/2+1/4...)=2n \)
- Space=\(O(n) \)