Lecture 7: Overview

• Selection
• Greedy Algorithms
• Dynamic Programming
Selecting the ith Element

• We want to select the ith smallest element
• Can use quicksort type algorithm (with randomized node selection)
• Basic idea:
 1. Select random pivot point
 2. Split nodes around pivot point
 3. Run procedure on set of nodes that contains ith smallest element
Complexity Analysis

• Best Case: $O(n)$ - pivot point is the ith element
• Even partition: $T(n) = O(n) + O(n/2) + O(n/4) + ... + O(2) + O(1) = O(2n) = O(n)$
• Worst case:
 $T(n) = O(n) + O(n-1) + ... + O(2) + O(1) = O(n^2)$
Complexity Analysis

- Average time:
1/n probability of each position i as pivot.

\[
T(n) = \sum_{i=1}^{n-1} \frac{1}{n} T(\max(i, n-i)) + O(n)
\]

\[
= \sum_{i=\lceil n/2 \rceil}^{n-1} \frac{2}{n} T(i) + O(n)
\]

Guess \(T(n) \leq cn \)

\[
T(n) \leq \frac{2}{n} \sum_{i=\lceil n/2 \rceil}^{n-1} ci + an = \frac{2c}{n} \left(\sum_{k=1}^{n} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k \right) + an
\]

\[
= \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(\lceil n/2 \rceil - 1)(\lceil n/2 \rceil)}{2} \right) + an \leq \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(n/2 - 2)(n/2 - 1)}{2} \right)
\]

\[
= c \left(\frac{3n}{4} + \frac{1}{2} - \frac{2}{n} \right) + an \leq cn - \left(\frac{cn}{4} - \frac{c}{2} - an \right)
\]
Complexity Analysis

• Need to show that for large \(n \), last expression is at most \(cn \). To do this, \(cn/4-c/2-an\geq0 \).
• Choose \(c>4a \)
• Gives \(n\geq2c/(c-4a) \)
Select w/ worst-case linear time

- Idea: split input into sets of 5
- Compute median of each of these sets
- Use select to compute the median of these medians
- Pivot around this point
Select w/ linear worst-case

- Pivot point is guaranteed to be good:
- Note that half of medians are less than or equal to the chosen median of medians and half are greater or equal
- Each of these sets contributes either 3 elements that are less than or equal to the median of medians or 3 elements that are greater than or equal to the median of medians
- Book contains proof that this algorithm is $O(n)$
Greedy Algorithms

- Solve a global optimization problem by making localized (or greedy decisions)
- Example: Making change (choose the largest coin)
 - Works for US currency
 - Doesn’t work for all possible coins: Consider using 0.30, 0.20, 0.05, 0.01 to make change for 0.40
Knapsack Problems

• Fractional Knapsack Problem
 • ith item is worth v_i dollars and weighs w_i
 • If the knapsack can hold a maximum weight W, how do we choose items
 • Can load fractions of an item
 • Strategy - fill with most valuable items (per unit weight), then next...
Activity Selection Problem

- Set S of n activities
- Each activity has
 - $s_i =$ start time of activity i
 - $f_i =$ finish time of activity i
 - $0 \leq s_i < f_i < \infty$
- Activities i and j are compatible
 - if $f_i \leq s_j$ or $f_j \leq s_i$ (no overlap)
- Problem: select the maximum size subset of mutually compatible activities
Structure of the Optimal Solution

- $S_{ij} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \}$
- Let $A =$ optimal set for S

$A_{i,j} =$ optimal for $S_{i,j}$

- if $a_k \in A_{i,j}$ then
 - $A_{i,k}$ must be optimal solution to $S_{i,k}$
 - Proof: assume there exist $A'_{i,k}$ with more activities than our $A_{i,k}$ (that is $|A'_{i,k}| > |A_{i,k}|$

=> we can construct a longer $A'_{i,j}$ by using $A'_{i,k}$ prefix. Contradiction.
Solution Algorithm

- Let $c[i,j]=\max \# \text{ of compatible activities in } S_{i,j}$
- Want to maximize $C[0,n+1]$
- $c[i,j]=0$ if $S_{i,j}=\{\}$

 - $=\max\{c[i,k]+c[k,j]+1\}$ for $i<k<j$ if $S_{i,j}\neq\{\}$
- Can do better with greedy choice
- Solution:
 - Pick next compatible task with earliest finishing time
Matrix-Chain Multiple

- Matrix multiply is associative
 - $(AB)C = A(BC)$
 - Computation cost can be different (dimensions differ)
- Problem: How to optimize placement of parentheses to minimize cost
Optimal Structure

• Consider the product: $A_1A_2...A_n$
• Matrix A_i has dimensions $p_{i-1} \times p_i$
• Let A_{ij} denote the product $A_iA_{i+1}...A_{j-1}A_j$
• We want to choose k such that computing $A_{ik}A_{k+1}j$ is the minimal way to compute A_{ij}
• Let $M(i,j)$ denote the cost of computing A_{ij}
• $M(i,j)=0$ if $i=j$ or $\min(M(i,k)+M(k+1,j)\quad +p_{i-1}p_kp_j)$ for $i\leq k<j$ if $i<j$
Recursive Procedure

M(i,j)
 if i=j
 then return 0
 else
 min=M(i,i)+M(i+1,j)+p_{i-1}p_ip_j
 for k<- i+1 to j-1
 if min>M(i,k)+M(k+1,j)+p_{i-1}p_kp_j
 min=M(i,k)+M(k+1,j)+p_{i-1}p_kp_j
 return min
Problem

• This recursive implementation is expensive
• We need to cache $M(i,j)$’s instead of re-computing them
• Can compute from the bottom up
0-1 Knapsack Problem

- Whole items only
- ith item is worth v_i dollars and weighs w_i
- If the knapsack can hold a maximum weight W, how do we choose items
- Can’t load fractions of an item
- Greedy algorithm doesn’t work
- Trying all combinations too computationally expensive
Optimal Structure

- If we remove w_j the remain load must be the most value load weighing $W-w_j$ that can be taken from the items excluding j
- Greedy strategy works for fractional problem but not 0-1 problem
Optimal Structure

- $B[k, w] = B[k-1, w]$ if $w_k > w$
 $$\max\{B[k-1, w], B[k-1, w-w_k] + b_k\}$$
 otherwise
Algorithm

Input: Set S of n items such that item i has positive benefit b_i and weight w_i. Total weight W.
Output: For $w=0,...,W$, maximum benefit $B[w]$ of a subset of S with total weight at most w

for $w<0$ to W do
 $B[w]<-0$
for $k<-1$ to n do
 for $w<-W$ downto w_k do
 if $B[w-w_k]+b_k > B[w]$ then
 $B[w]<-B[w-w_k]+b_k$