EECS 114
Lecture 8

Brian Demsky
bdemsky@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine
Lecture 8: Overview

- Midterm covers:
- Chapter 1-3 - Complexity
- Chapter 6-9 – Sorts/Selection
- Chapter 10-12 – Stacks/Queues/Hashtables/Binary Search Trees
- Chapter 15-16 – Dynamic Programming/Greedy Algorithms
Graphs

- $G=(V,E)$
- V: vertices (or nodes). Notation $u, v \in V$
- E: edges. Each connection a pair of vertices $E \subseteq V \times V; (u,v) \in E$
Variations

- Undirected or Directed
- Weighted (notation $w(u, v)$)
- Can also have weighted vertices
Undirected Graphs

• degree of a vertex: # of edges connected to the vertex
• complete graph aka clique:
 • graph where all pairs of vertices are connected
• bipartite graph
 • undirected graph whose V=\(V_1 \cup V_2\) and \(E \subseteq V_1 \times V_2\)
• multigraph: can have multiple edges between the same pair of vertices (including self edges)
• hypergraph: can have edges connect more than two vertices
Directed Graphs

- in-degree: # incoming edges
- out-degree: # outgoing edges
- path: \(<v_0, v_1, ..., v_k>\) where \(<v_i, v_{i+1}> \in E\)
- simple path: path where all \(v_i\) are distinct
- cycle: a non-trivial simple path plus \(<v_k, v_0>\) to close the path
- DAG: directed acyclic graph (contains no cycles)
- strongly connect: digraph whose vertices are all reachable from each other
Representations

• Adjacency list:
 • For each node, list its neighbors on outgoing edges
 • good for sparse graphs
 • for weighted graphs, store weight in linked list
• Adjacency matrix:
 • bit matrix to represent presence of edge
 • weighted - can store weight in matrix
• Tradeoffs
 • adjacency lists - more space efficient, easier to grow
 • adjacency matrix - fast access, but \(O(V^2)\) space
Breadth First Search

• “Distance” refers to number of vertices
• Visit vertices in increasing order of distance from starting point
• Not necessarily unique
• Explored breadth and then depth
BFS(G,s)

1 for each vertex u in V[G] -{s}
2 do color[u] <- WHITE
3 d[u] <- Infinity
4 pr[u] <- NIL
5 color[s] <- GRAY
6 d[s] <- 0
7 pr[s] <- NIL
8 Q <- {}
9 ENQUEUE(Q,s)
10 while Q ≠ {}
11 do u <- DEQUEUE(Q)
12 for each v in Adj[u]
13 do if color[v]=WHITE
14 then color[v]<-GRAY
15 d[v] <- d[u] + 1
16 pr[v] <- u
17 ENQUEUE(Q, v)
18 color[u] <- BLACK
Depth first search

• Explores depth then neighbors
• Depth isn’t necessarily the same as distance in BFS
• discover vertices before we visit
• push vertices on stack
• DFS order may not be unique!
DFS(G)

1 for each u in V[G]
2 do color[u] <- WHITE
3 pr[u] <- NIL
4 time <- 0
5 for each u in V[G]
6 do if color[u] = WHITE
7 then DFS-VISIT(u)
DFS-VISIT(u)

1 color[u] <- GRAY (discovered u)
2 time <- time +1
3 d[u] <- time
4 for each v in Adj[u]
5 do if color[v] = WHITE
6 then pr[v] <- u
7 DFS-VISIT(v)
8 color[u] <- BLACK
9 f[u] <- time <- time +1
Time stamps

- Time stamp each vertex with two time stamps
 - discover time $d[u]$
 - finish time $f[u]$
- Can use to detect cycles
Topological Sorting

- Directed Acyclic Graph
- Sorted order in which all of a nodes predecessors appear before the node
- Useful if computing some property on graph the requires computations of predecessors
- Useful for scheduling tasks that depend on other tasks
Algorithm

1 call DFS to compute finishing times for each vertex v
2 as each vertex is finished insert it onto the front of a list
3 return the list of vertices