Lecture 9: Overview

- Single Source Shortest Path
Problem

- Single starting vertex
- Find shortest path to all other vertices
Initialization

• All algorithms in chapter use same basic strategy: relaxation

`INITIALIZE-SINGLE-SOURCE(G,s)`

for each vertex $v \in V[G]$

 do $d[v] <- \infty$

 pr[v] <- NIL

pr[v] <- NIL

$d[s] <- 0$
Relax Procedure

RELAX(u, v, w)
1 if d[v] > d[u] + w(u, v)
2 then d[v] <- d[u] + w(u, v)
3 pr[v] <- u
Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i<- 1 to |V[G]| -1
3 do for each edge (u,v) ∈ E[G]
4 do RELAX(u, v, w)
5 for each edge (u,v) ∈ E[G]
6 do if d[v] > d[u] + w(u,v)
7 then return FALSE
8 return TRUE
Bellman-Ford Algorithm

• Works for edges with negative lengths
• Problem isn’t well-defined if there is a cycle of negative length
• If there is a negative cycle, algorithm returns false
• Complexity is $O(VE)$
Shortest Path in DAG

• If we consider nodes of a weighted DAG in topologically sorted order, we can compute shortest path in $\Theta(V+E)$ time

DAG-SHORTEST-PATHS(G, w, s)
1 topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE(G,s)
3 for each vertex u, taken in topologically sorted order
 4 do for each vertex $v \in \text{Adj}[u]
 5 \quad \text{do RELAX}(u, v, w)$
Dijkstra’s Algorithm

DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S <- {}
3 Q <- V[G]
4 while Q ≠ {}
5 do u <- EXTRACT-MIN(Q)
6 S <- S ∪ {u}
7 for each vertex v ∈ Adj[u]
8 do RELAX(u, v, w)
Dijkstra’s Algorithm

- Idea is to keep distance estimates to neighbors of set S.
- Add neighbor with shortest distance to set S and update other neighbors.
- Doesn’t work with negative edges (they could affect distances in S).
- Exact runtime depends on implementation of priority queue.
Difference Constraints and Shortest Paths

- Want to satisfy a set of constraints $Ax \leq b$
- Special case - difference constraints
- Each row of A contains one 1 and one -1
- Can set up as a shortest paths problem
- Variables are vertexes (plus special vertex v_0 which has zero weighted edges to all other vertices)
- Edges represent constraints
 - Constraint $x_j - x_i \leq b_k$ is represented as an edge (v_i, v_j) with weight b_k (correspond to triangle constraints)
- Use Bellman-Ford algorithm to satisfy