Problem 1 (25pts): Just a review...

Consider the following ordinary differential equation (ODE):
\[
\frac{dx}{dt} = \begin{cases}
 x - 4 & \text{if } t < 5 \\
 2 - x & \text{if } t \geq 5
\end{cases}
\]

1. What type of ODE is it?
2. Find a solution of this equation satisfying \(x(0) = 4 \). Describe the qualitative behavior of this solution.
3. Find a solution of this equation satisfying \(x(0) = 3 \). Describe the qualitative behavior of this solution.
4. Describe the qualitative behavior of any solution of this system as \(t \to \infty \).

Problem 2 (25pts): On the notion of state

For each of the following systems, describe the state of the system and write the equations as a first order system, if possible.

Note that \(x', x'',... , x^{(n)} \) are used to denote the first, second and \(n^{th} \) derivative of the function \(x(t) \) with respect to the independent variable \(t \). All the variable are assumed to be real. The letters \(x,y,z \) denote variables (unknown functions of \(t \)).

1. \(x''' = x'' \)
2. \((x')^3 + \sin(t).x^2 = 2 \)
3. \(\sin(x^{(3)}) + x = \ln(t.x') \)
4. \(x''.x' + (x''' + x)^2 = \sin(x'') \)
5. \(x''y'' + x.y'.z'' = 2 \)
6. \(x.y'' + (x'.y')^2 = -5 \); \(x^{(4)}.y = \frac{x}{y} \)

Problem 3 (25pts): On the notion of flow

1. Determine the flow defined by of the following differential equation \(\frac{dx}{dt} = x^2 \). What is the domain of definition of the flow?
2. Let us now consider the following system \(\frac{dx}{dt} = x^{1/3} \). Does this define a flow? Explain.
Problem 4 (25pts): Phase portraits

Determine the equation of the phase trajectories for the given systems and sketch several representative trajectories. Use arrows to indicate the direction of movement along those trajectories.

1. \[\frac{dx}{dt} = y; \quad \frac{dy}{dt} = -x \]
2. \[\frac{dx}{dt} = x \cdot y; \quad \frac{dy}{dt} = x^2 \]
3. \[\frac{dx}{dt} = y^2; \quad \frac{dy}{dt} = -x \cdot y \]

(all the variables are real, 1-dimensional variables).

Suggestions for further study

You should be able to solve linear first order ODEs in 1-dimension, and have heard about the notion of separation of variables. If you haven’t seen that during your undergraduate studies, please read chapter 2 of Greenberg’s book, for example. Doing a few exercise of this chapter of the first one would also be good if you don’t have any background on ODEs.