MAE 200A: Engineering Analysis I – Midterm #1

This is a take-home exam

Assigned Thursday, October 25th, 2012.
Due, beginning of the lecture, on Tuesday October 30th, 2012.

Guidelines

• Please use a “blue book” to write your answers. Clear explanations of your reasoning and a clean copy are required to receive full credit for a question. In particular, prove all of your answers (or disprove the statements by counter-examples, for example).

• The exam should be done individually. No discussion allowed (except with textbooks and yourself!)

Problem 1 (10pts)

For the following system, describe the solution set, both geometrically and algebraically.

\[
\begin{align*}
(1) & \begin{cases}
 x_1 - x_2 = 1 \\
 x_1 - 2x_2 = 2 \\
 2x_1 - x_2 = 4
\end{cases} & (2) & \begin{cases}
 x_1 + 2x_2 + 3x_3 = 4 \\
 4x_1 + 3x_2 + 2x_3 = 1
\end{cases}
\end{align*}
\]

Problem 2 (15pts)

1. Give an example of subsets of \(\mathbb{R}^3 \) that is:
 (a) closed under addition, but not closed under scalar multiplication.
 (b) closed under scalar multiplication, but not closed under addition.

2. Define the “Spam” of a subset \(S \) of a vector space \(V \) as:
 \[\text{Spam}(S) = \{ a.u + b.v \mid a, b \in \mathbb{R} \text{ and } u, v \in S \} \]
 Does \(\text{Spam}(S) = \text{Span}(S) \)?

Problem 3 (20pts)

1. Let us consider \(\mathbb{R}^n \) equipped with two bases \(e = \{ e_1, \ldots, e_n \} \) and \(f = \{ f_1, \ldots, f_n \} \) related by: \(f_j = \sum_{j=1}^n a_{ij} e_j \); \(j = 1, \ldots, n \) we define the change of basis matrix \(A = (a_{ij}) \). We assume that \(A^T.A = A.A^T = I \), the identity matrix. Matrices, \(M \), satisfying such a relation, \(M^T.M = M.M^T = I \), are called orthogonal. Show that \(A \) is invertible and compute the inverse of \(A \). What is the relation between the coordinates \((x_1, \ldots, x_n) \) of a vector in the \(e \)-basis and the coordinates \((y_1, \ldots, y_n) \) of the same vector in the \(f \)-basis?

2. For an arbitrary (real) square matrix \(B \), one can show that there exist \(U \) and \(V \) (real) orthogonal matrices, and \(D \) a diagonal matrix such that \(B = U^T.D.V \). This is the singular value decomposition of \(B \) and the (non-zero) diagonal elements of \(D \) are the singular values of \(B \). Interpret the singular value decomposition in terms of change of basis and draw a commutative diagram.

3. Do the eigen-values of a square matrix always equal its singular values? If so, prove it. If not, show a counter-example.
Problem 4 (15pts)

This problem looks at the modeling the simplest model for a spacecraft rotational dynamics. We assume that the spacecraft is equipped with small thrusters orthogonal to its major axis, which allows it to operate impulsive changes in its angular velocity, ω, along that axis. Between two impulsive maneuvers, the angular velocity is constant and the orientation of the spacecraft (relative to a fixed direction in space) is determined by an angle $\theta(t) = \omega t + \theta_0$. Let's assume that the spacecraft starts with zero angular velocity for $T < t_0$ and that $\theta(t) = 0$ on this interval of time. The spacecraft then performs a sequence of 4 impulsive maneuvers at times $t_0 < t_1 < t_2 < t_3$. In each interval $[t_i, t_{i+1}]$ the angular velocity is denoted by ω_i.

- Assuming there is no limitation to the values of the ω_i, describe the possible set of functions $\theta(t)$ on the interval $[t_0, t_3]$. Show in particular, that this set is a vector space, V.

- Describe a basis for V and determine the dimension of V.

- Consider the mapping $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(\omega_0, \omega_1, \omega_2) = (\theta(t_1), \theta(t_2), \theta(t_3))$. Is this mapping linear? What is its range. Is there a unique way to achieve given orientations at these given times? Justify.

Problem 5 (20pts)

To a first approximation, the Earth can be considered as a perfect sphere rotating uniformly relative to inertial reference frames centered at the center of mass of the Earth. If \vec{r} denotes the position vector of a point fixed relative to the surface of the Earth, then classical mechanics, indicates that the inertial velocity and acceleration of that point is given as $\vec{v} = \vec{\omega} \times \vec{r}$ and $\vec{a} = \vec{\omega} \times (\vec{\omega} \times \vec{r})$, respectively. Here $\vec{\omega}$ denotes the angular velocity of the Earth relative to inertial space. Let us thus consider the mappings V and A which associate the inertial velocity and acceleration to every point \vec{r}, according to the above laws.

1. Show that V and A are linear operators.

2. Show that both V and A have zero as eigen-value and find a corresponding eigen-vector. What are the geometric and algebraic multiplicities of this eigenvalue?

3. Describe the canonical forms of these operators and find a basis in which both V and A are in such a form.

Problem 6 (20pts)

In this problem we consider a 3-link robot arm as illustrated in Figure 1. The coordinates of the end-tip of the arm (in the standard basis of \mathbb{R}^2) is related to the link lengths and angles as follows:

$$
\begin{align*}
x &= l_1. \cos \theta_1 + l_2. \cos(\theta_1 + \theta_2) + l_3. \cos(\theta_1 + \theta_2 + \theta_3) \\
y &= l_1. \sin \theta_1 + l_2. \sin(\theta_1 + \theta_2) + l_3. \sin(\theta_1 + \theta_2 + \theta_3)
\end{align*}
$$

1. Assuming the link lengths, l_i, can be chosen to be any value (even negative), for which value of $\theta_1, \theta_2, \theta_3$ can you reach any given (x, y) position? In those cases, how many choices of lengths (l_1, l_2, l_3) do you have to achieve a desired position? If multiple choices exists, can you always choose a choice with positive link length?

2. For the value of $\theta_1, \theta_2, \theta_3$ where you cannot reach any (x, y) position by controlling the link lengths, describe the set of positions (x, y) that can be reached. Express you answer in terms of span of particular vectors.

Figure 1: A planar 3-link robot arm.