Course Logistics

- Two lectures a week
 - Slides available before lectures
 - Many lectures will include practice multiple-choice questions, which will not be made available online
 - Leave time for questions at the end of each lecture
- Assessment will be made up of
 - 20% for take-home assignments
 - Straightforward, to help understand material, with discussion in class, and a serious effort will earn a (near) perfect grade
 - 30% for mid-term
 - 50% for final
 - Both exams will be primarily multiple-choice, with some short answer questions
 - Details on on class web page, and see especially the FAQs

Cognitive Science Content

- The content areas, or phenomena, that cognitive science deals with are attempts to understand how humans (and animals)
 - Perceive the world
 - Act in the world
 - Learn about new or changing information
 - Encode, store and organize information in the mind
 - Make decisions based on available information
 - Reason and solve problems
 - Communicate and develop
- Cognitive science deals with perception, action, learning, memory, decision-making and problem-solving
Cognitive Science Methods

- Cognitive science is inherently multi-disciplinary, involving research from (at least) the fields:
 - Psychology
 - Computer science
 - Machine learning
 - Statistics
 - Cognitive neuroscience
 - Linguistics
 - Philosophy
 - Education

Building computer models of human cognition

- To understand how the brain works
- To understand the mental representations and processes that produce behavior
- To understand limits of theories
- To understand structure of language

We focus mostly on insights from Cognitive Psychology

Cognitive Science Methods

- These data are old, but the dominance of psychology and computer science remains true, with cognitive neuroscience growing in the last decade.
Cognitive Science Applications

- Any area that benefits from understanding and predicting how people perceive information and make decisions has the potential to apply knowledge from cognitive science
 - "Artificial intelligence" type applications
 - Search engines, decision-support systems, ...
 - "Human-computer interaction" type applications
 - Information visualization, interface design, ...
 - "Psychometric" type applications
 - Measurement of cognitive abilities, detection and diagnosis of impairment, ...
 - "Social cognition" type applications
 - Marketing, collaboration, ...

History of Cognitive Science
History: Philosophical background

- The study of human cognition traces its history back to the philosophers of Greece: Aristotle, Socrates, Plato
- Two philosophical standpoints:
 - empiricism: all knowledge comes from experience
 - nativism: we come into the world with innate knowledge

Introspection

- Early cognitive research studied the connection between physiological (neural) processes and cognitive processes
- Wundt established the first psychology laboratory in 1879 and studied conscious experience using introspection
 - e.g., Mayer and Orth (1901) free association task
 - Experimenter would say a word, and subject would report the thoughts that occurred in response to the word
- Introspection shows it is possible to study mental processes without studying physiological processes

Ebbinghaus

- Hermann Ebbinghaus (1885) conducted the first "contemporary" behavioral psychological experiments, focusing on memory:
 - he created about 2,300 nonsense syllables (e.g., ZUG REN), and organized them into random lists
 - he learned the lists, and tested himself at various time intervals
 - he recorded his accuracy in remembering, and the time needed to re-learn the lists
Behaviorism

- By the 1930s, there was a reaction to the German introspectionist school, particularly in the form of the US behaviorist school
- Behaviorism is (was?) a form of associationism (empiricism), viewing the structure of the mind as having been formed through interaction with the environment
 - Watson (1930) “give me a dozen healthy infants, well-formed, and my own specified world to bring them up in and I’ll guarantee to take any one at random and train them to become any type of specialist”
 - Skinner believed studying S-R relationships was preferable to the description of thinking as mental activity

Methodological flaws

- Cognitive scientists want to explain and predict behavior, and this needs to make some reference to mental processes
 - perception, memory, understanding, intentions
- Both methodologies are inadequate
 - introspection: many mental processes are not available to conscious experience
 - a bit like trying to catch yourself in the mirror without looking
 - behaviorism: S-R relationships do not explain behavior that is guided by an understanding of the stimulus
 - e.g., the creative use of language

Functionalism

- The current methodological approach in cognitive psychology is consistent with the philosophy of functionalism
- Use as empirical data observable ‘facts’, as both input and outputs
 - e.g., type of stimuli presented, length of presentation, presence of a distraction, ...
 - e.g., accuracy of recall, time to make a decision, confidence in a decision, ...
- Attempt to develop models that explains, describes, and predicts these sorts of observations
 - i.e., what must the mental world be like in order for that observation to have been made
Functionalism

- The goal is to model what happens inside the "black box", to describe, explain and predict the relationship between input and output
 - Describe: fewer nonsense syllables on the list are remembered after a long time period between study and test
 - Explain: the syllables are over-written by other syllables learned on other lists
 - Predict: if the length between study and test is doubled, the number of syllables remembered will be halved

Challenges in Understanding Cognitive Phenomena

- Understanding the phenomena of cognitive science using functionalism generally extremely challenging
 - It is hard to measure relevant variables accurately or directly
 - It is often expensive or impossible to collect extensive relevant information
- Analogous to determining the physical layout of a library
 - based on simple surveys about book searches and successes
 - given to students entering and exiting the main doors

Birth and Growth of Cognitive Science

- Spurred by rapid growth in computing technology
 - The metaphor of the mind as a computer led to
 - the information processing view of cognition
 - the creation of the field of Artificial Intelligence
 - The metaphor of the mind as a parallel network of neuron-like computing elements
 - leading to neural network or connectionist approaches
 - Most recent has been the rise of
 - modern machine learning and statistical methods, especially Bayesian methods
 - cognitive neuroscience based on brain imaging
Marr’s (1982) Levels of Analysis

- **Implementation**
 - How is perceptual and cognitive processing, the remembering of information, and so on, actually done with neural hardware in the brain?
 - Often this is the focus of cognitive neuroscience

- **Algorithmic**
 - What processing steps are made to make a decision, or produce behavior, or so on?
 - Often this is the focus of cognitive psychology

- **Computational**
 - Why does the cognitive capability behave like it does? What is its goal or purpose?
 - Often this is the focus of artificial intelligence or machine learning

Levels of Analysis for an Arithmetic Problem

1. **Computation**
 - Description of computation steps

2. **Algorithm**
 - Steps to solve the problem

3. **Implementation**
 - How the algorithm is executed in practice