Ch. 6 Discussion ?’s

• Review Questions
 – 6.10
• First Law of Thermodynamics
 – 6.19
• Enthalpy of Chemical Reactions
 – 6.26, 6.28
• Calorimetry
 – 6.37
• Standard Enthalpy of Formation and Reaction
 – 6.45, 6.46, 6.48, 6.55, 6.56
• Heat of Solution and Dilution
 – 6.68, 6.70
6.10 Decomposition reactions are usually endothermic whereas combination reactions are usually exothermic. Give a qualitative explanation for these trends.

Answer:

Decomposition: $AB \rightarrow A + B$; breaking bonds

Combination: $A + B \rightarrow AB$; making bonds

Endothermic: requires energy

Exothermic: releases energy
6.19 Calculate the work done when 50.0 g of tin dissolves in excess acid at 1.00 atm and 25°C:

\[\text{Sn}(s) + 2\text{H}^+(aq) \rightarrow \text{Sn}^{2+}(aq) + \text{H}_2(g) \]

Assume ideal gas behavior.

Answer:

\[W = -P\Delta V \]

\[P = 1 \text{ atm} \quad \Delta V = \text{calculate from the rxn} \]

\[\text{g Sn} \rightarrow \text{mol H}_2 \rightarrow \text{L H}_2 = \Delta V \]

\[PV = nRT \quad V = \frac{nRT}{P} \]
6.26 Determine the amount of heat (in kJ) given off when 1.26×10^4 g of NO$_2$ are produced according to the equation

$$2\text{NO}_2(g) + \text{O}_2(g) \rightarrow 2\text{NO}_2(g)$$

$\Delta H = -114.6$ kJ/mol

Answer:

$$2\text{NO}_2(g) + \text{O}_2(g) \rightarrow 2\text{NO}_2(g) + 114.6 \text{ kJ}$$

$$\text{g NO}_2 \rightarrow \text{mol NO}_2 \rightarrow \text{kJ}$$
Consider the reaction

\[\text{H}_2 (g) + \text{Cl}_2 (g) \rightarrow 2\text{HCl}(g) \]

\[\Delta H = -184.6 \text{ kJ/mol} \]

If 3 moles of \(\text{H}_2 \) react with 3 moles of \(\text{Cl}_2 \) to form \(\text{HCl} \), calculate the work done (in joules) against a pressure of 1.0 atm at 25°C. What is \(\Delta E \) for this reaction? Assume the reaction goes to completion.

Answer:

\[E = q + w; \ E = \Delta H - PdV \]

\(6 \text{ mol gas} \rightarrow 6 \text{ mol of gas} ; \ dV = 0 ; \ E = \Delta H \)
A 0.1375-g sample of solid magnesium is burned in a constant-volume bomb calorimeter that has a heat capacity of 3024 J/°C. The temperature increases by 1.126 °C. Calculate the heat given off by the burning Mg, in kJ/g and in kJ/mol.

Answer:

Draw a picture

Heat of calorimeter temp change = heat of rxn

°C → J → kJ

kJ → kJ/g → kJ/mol
6.45 Which of the following standard enthalpy of formation values is not zero at 25°C? \(\text{Na}_\text{(s)}, \text{Ne}_\text{(g)}, \text{CH}_4\text{(g)}, \text{S}_8\text{(s)}, \text{Hg}_\text{(l)}, \text{H}_\text{(g)}. \)

Answer:

\[\Delta H^\circ_f = 0 \]; element in standard state

i.e. \(\text{Na}_\text{(s)}, \text{Ne}_\text{(g)}, \text{S}_8\text{(s)}, \text{Hg}_\text{(l)} \)

\(\text{CH}_4\text{(g)} \) and \(\text{H}_\text{(g)} \) are nonzero
The ΔH°ₙ values of the two allotropes of oxygen, O₂ and O₃, are 0 and 142.2 kJ/mol, respectively, at 25°C. Which is the more stable form at this temperature?

Answer:

In thermodynamics, generally lower E = more stable

O₂ = more stable

ΔH°ₙ = 0 ; element in standard state

More stable allotrope = standard state
6.48 Predict the value of ΔH°_f (greater than, less than, or equal to zero) for these elements at 25°C

(a) Br_2 (g); Br_2 (l),

(b) I_2 (g); I_2 (s)

Answer:

$\Delta H^\circ_f = 0$; element in standard/stable state

(a) Br_2 (l) is most stable form of Br; equal to 0

Br_2 (g) less stable than Br_2 (l); > 0

(b) I_2 (s) most stable form of I; equal to 0

I_2 (g) less stable than I_2 (s); > 0
6.55 Methanol, ethanol, and n-propanol are three common alcohols. When 1.00 g of each of these alcohols is burned in air, heat is liberated as shown by the following data: (a) methanol (CH$_3$OH), -22.6 kJ; (b) ethanol (C$_2$H$_5$OH), -29.7 kJ; (c) n-propanol (C$_3$H$_7$OH), -33.4 kJ. Calculate the heats of combustion of these alcohols in kJ/mol.

Answer:

kJ/g \rightarrow kJ/mol
The standard enthalpy change for the following reaction is 436.4 kJ/mol:

\[\text{H}_2 (g) \rightarrow \text{H} (g) + \text{H} (g) \]

Calculate the standard enthalpy of formation of atomic hydrogen (H).

Answer:

\[\Delta H^\circ_{\text{rxn}} = \Sigma \Delta H^\circ_{f \text{products}} - \Sigma \Delta H^\circ_{f \text{reactants}} \]

\[\Delta H^\circ_{f \text{H}_2(g)} = 0 \text{ kJ/mol} \]

Solve for \(\Delta H^\circ_{f \text{H}(g)} \)
6.68 Mg$^{2+}$ is a smaller cation than Na$^+$ and also carries more positive charge. Which of the two species has a larger hydration energy (in kJ/mol)? Explain.

Answer:

Mg = more charge in smaller space; Z_{eff}: Mg$^{2+} >$ Na$^+$

large Z_{eff} = strong ion-dipole with H$_2$O = small E_{hyd}

Na$^+$ has larger hydration energy
6.70 Why is it dangerous to add water to a concentrated acid such as sulfuric acid in a dilution process?

Answer: Very high heat of dilution