Major Life Changes and Behavioral Markers in Social Media: Case of Childbirth

Munmun De Choudhury Scott Counts Eric Horvitz
Microsoft Research, Redmond WA 98052
{munmund,counts,horvitz}@microsoft.com

ABSTRACT
We explore the harnessing of social media as a window on changes around major life events in individuals and larger populations. We specifically examine patterns of activity, emotional, and linguistic correlates for childbirth and postnatal course. After identifying childbirth events on Twitter, we analyze daily posting patterns and language usage before and after birth by new mothers, and make inferences about the status and dynamics of changes in emotions expressed following childbirth. We find that childbirth is associated with some changes for most new mothers, but approximately 15% of new mothers show significant changes in their online activity and emotional expression postpartum. We observe that these mothers can be distinguished by linguistic changes captured by shifts in a relatively small number of words in their social media posts. We introduce a greedy differencing procedure to identify the type of language that characterizes significant changes in these mothers during postpartum. We conclude with a discussion about how such characterizations might be applied to recognizing and understanding health and well-being in women following childbirth.

Author Keywords
childbirth; emotion; health; language; postpartum; social media; Twitter; wellness

ACM Classification Keywords
H5.3

INTRODUCTION
Social media platforms including Twitter and Facebook provide a window onto the thoughts and feelings of individuals and populations. Considerable recent research has focused on exploration and mining of such data in a variety of domains, ranging from financial markets to politics, public health, and crisis mitigation [3,28,37].

We explore the domain of personal health, specifically looking at the effects of a major life event on mood and behavior. To do so, we employ three social media-centric measures: (1) patterns of activity, (2) linguistic style, and (3) emotional expression. Patterns and levels of activity define interactions with others and overall engagement with the social landscape. Language has been shown to provide useful psychological markers [29], and prior research [36,38] has shown that usage of language has the potential to convey information about individuals’ behavior, their social surroundings, contexts and crises they are in. Emotions are founded on interrelated patterns of cognitive processes, physiological arousal, and behavioral reactions [11]. They appear to serve to organize experiences and influence behavior by directing attention, and by influencing perceptions of self, others, and the interpretation and memories of events. All three of these—patterns of activity, linguistic expression, and emotion—have been used in a variety of ways to understand as well as to promote general wellness among individuals and encourage healthy behavior (e.g., [2,16,32]). Social media provides access to these dimensions of human behavior in a longitudinal manner, and thus may be an informative tool in the study of how people experience and respond to significant life events.

We use content from Twitter in our study. Twitter has a large user base, including many who have been using the service for years. The duration of periods of use allows for analyses at time scales long enough to include periods before and after one or more major life events. Furthermore, Twitter is often used to broadcast updates on daily life, as well as on external information of interest, with the goals of maintaining existing relationships with strong and weak ties, and at the same time building new ties [22]. Thus, Twitter is a natural medium for sharing news about important updates and happenings in peoples’ lives, including such life-changing events as childbirth, marriage, and loss of a job, and such deeply traumatic experiences as death of a loved one, divorce, and a severe car accident.

We focus in this paper on the major life event of childbirth. We explore and present a number of measures of activity patterns, emotional expression, and linguistic style to detect changes in 85 new mothers in the postnatal phase (approximately the five months following childbirth), as compared to the prenatal period (approximately the five months before childbirth), based on Twitter postings. One contribution of the work is a method for identifying new
mothers from Twitter data. We follow an iterative strategy to collect posts that are indicative of births in Twitter’s Firehose stream, and then use crowdsourcing techniques to determine with high precision a set of new mothers.

Our analyses, both quantitative and qualitative, show that a percentage of new mothers in our dataset (~15%) in the postnatal phase undergo significant behavioral changes compared to other mothers, as well as to an average Twitter user. These changes include: reduced activity, reduced positive affect, heightened negative affect, and significant change in use of specific linguistic styles, including interpersonal pronouns. Furthermore, on identifying aspects of language in the Twitter posts that contribute to this change, we find that changes in usage of a narrow span of words (~1-10% of the entire language vocabulary characterizing the content of posts of the new mothers) distinguish new mothers who show significant changes across multiple measures compared to other new mothers. Such minimal yet discriminatory linguistic changes suggest that language-centric diagnostic tools might one day be developed to aid in the identification of potential postpartum disorders, thereby broadly helping to reduce non-invasively the stigma around temporary and persisting challenges with mood and mental illness.

We believe that the motivation, methodology, and direction of this research can be leveraged in a variety of areas. One scenario comprises better identification of forthcoming or new mothers who would benefit from support groups that encourage postpartum social support and provide wellness advice to prenatal and postnatal women. In essence, these groups can strive to provide a venue where new mothers can find each other, trade baby tips, and start up friendships. Broadly, through our proposed behavioral measures, we hope to introduce a line of research that will help promote health-related well-being, by reflecting and even forecasting reactions to a range of major life events, leveraging social media.

BACKGROUND LITERATURE
Understanding behavioral change has been a focus of attention for researchers in social, clinical, personality, and cognitive psychology [29,30,35,38], and more recently in the HCI [7] and social media communities [9,14]. Hence we draw upon insights from a variety of research areas on findings about behavioral patterns surrounding childbirth.

Behavior Analysis around Childbirth
Clinical and psychiatric studies around monitoring behavior of new mothers have been of interest to researchers for several decades including, for instance, the role of social support on the emotion, attitudes, and behavior of new mothers [30,34]. A considerable amount of research in this area has focused on postpartum depression (PPD), a type of clinical depression that affects a portion of mothers after childbirth [12,19]. For instance, Nielson et al. [24] examined demographic, obstetric, and psychosocial risk factors of postpartum depression, finding that psychological distress and perceived social isolation during pregnancy were both significant predictors of postpartum depression.

Research on psychological aspects of childbirth for mothers is challenged by the limitations of data availability and collection; obtaining relevant data can require collecting data about women from late pregnancy to months after childbirth. To date, studies have been based largely on self-reports that do not always scale to large populations, making it hard to generalize the findings about the behaviors of new mothers. To this end, social media and networking tools can provide a new window onto new mothers for studying behavioral changes at scale without necessarily requiring active engagement with the mothers.

Behavior Analysis in Psycholinguistics
Researchers in the psycholinguistics community have explored how utterances, written texts, or other expressions of language can be used to better understand human intentions, moods, competencies, and disorders. As examples, computerized analysis of written text has revealed cues and diagnostic markers about emotional closeness of individuals [17], neurotic tendencies, and depression and anxiety among other psychiatric disorders [27,29,38]. Oxman et al. [27] demonstrated that linguistic analysis of speech samples could reliably and accurately classify patients into diagnostic groups such as those suffering depression and paranoia. Along similar lines, Tellengen [35] investigated how the structures of emotional expression can be used to assess anxiety. However, studies of depression, anxiety, or other distinctive behavioral changes in these works have been explored without regard to the context of events in the lives of individuals. One exception is the work of Spera, Buhrfeind and Pennebaker [33], who examine how expressive writing may help people cope with job loss.

Behavior Analysis around Events via Social Media
There is an extensive body of work on using social media to understand and track the emotions and behavior of large populations [18]. While some of this work has focused on public events like collective crisis situations [36], the influence of major events in an individual’s life (e.g., childbirth, death, job loss etc.) on expression in social media has not been explored in a rigorous manner. Along with the Spera et al. work [33] mentioned above, an exception is [5], where the authors used linguistic features to predict death related bereavement on the MySpace social network. On a similar note, the use of social media to enable the maintenance of friendships during personal moves has also been studied [31].

Social Media for Health and Wellness
Interest has been growing in opportunities to employ social media and networking and other Internet data to encourage
and promote healthy behavior and well-being [1,16,20,32]. Bahr at al. [2] studied how social networks can be leveraged to help people combat obesity. Munson et al. [21] presented an application for Facebook that promotes health interventions. Jamison-Powell et al. [15] examined discussions around insomnia on Twitter.

The breadth of work aimed at the use of social media to promote physical and psychosocial health highlights the spectrum of opportunities for creating applications that can support and encourage health-related awareness and self-reflection. In many cases, these tools would benefit from methods for identifying users who most need them. Our hope is that the techniques and methodologies we present here for measuring emotional and behavioral change around childbirth can be generalized to other health and wellness applications.

DATA

As we are interested in understanding behavioral change around the major life event of the birth of a child, our population of interest comprises new mothers: female Twitter users who are likely to have given birth to a child in a given timeframe. Although we have observed that many fathers post about the birth of a child soon after the birth, we focus maternally because it is well established that new mothers more consistently experience a significant change in their lifestyle and habits in the postnatal period, compared to the fathers (ref. [19,25]).

Identifying new mothers on social media based on their posts, and in the absence of self-reported gender, is a challenging problem. We follow a multistage approach involving (1) constructing a candidate set of likely new mothers based on filtering a large corpus of Twitter posts for birth announcement events, and (2) identifying with high confidence a set of new mothers using gender inference and ratings from crowdsworkers recruited via Amazon’s Mechanical Turk (AMT). We discuss these steps in the following subsections.

Identifying Birth Events

We first construct a list of several queries to search the Twitter Firehose stream (made available to us via a contract with Twitter) for candidate users likely to be posting about their childbirth—a proxy for announcement of a birth event. We focus on searching the Twitter stream over a fixed two-month period between May 1, 2011 and Jun 30, 2011 (English language posts only), roughly the midpoint of the Twitter data that we had available. This leaves us sufficient data before and after the period to compare the prenatal and postnatal behavior of the new mothers.

To obtain the queries, we examined archives of birth announcements in four local newspapers over a period of three years from 2009 to 2012 (The Beacon-News\(^1\), Aurora News-Register\(^1\), Crete News\(^1\), and Gothenburg Times\(^1\)).

Based on independent manual inspection from two researchers, we formulated a lexicon of sets of keywords and phrases that typically characterized the newspaper birth announcements. The terms resonate with intuitions that parents announce the birth of their children in canonical ways, often including mention of the labor experience and reporting on the physical details of their newborn child, including gender, weight, and height. These phrases were considered as search terms to identify birth announcements, to find candidate sets of new mothers from the Twitter stream. Examples of these identifying queries are given in Table 1. This phase yielded a candidate set of 483 unique users, who were the authors of potential birth announcement Twitter posts.

(1) birth, weigh, pounds/lbs, inches, length/long, baby/son/daughter/boy/girl	(2) announce, birth of, son/daughter/brother/sister
(3) announce, arrival of, son/daughter/brother/sister	(4) are the parents of, son/daughter/boy/girl/baby
(5) welcome home by, brother/sister/sibling	(6) is the proud big brother/sister
(7) after, labor, born	(8) it’s a boy/girl, born

Identifying New Mothers through Crowdsourcing

As we are interested in mothers, inferring the gender of the above constructed candidate user set is important. Twitter does not provide a facility for users to report on their gender. Thus, we relied on cues obtained from their self-declared first names to infer the gender of the users in our candidate set. To this end, we employed a lexicon-based approach that identifies matches of the first name of the Twitter user to a large dictionary of first names collated from the United States Census data, available for download (http://www.census.gov/genealogy/www/data/1990surname/names_files.html), as well as a publicly available corpus of Facebook users’ names and self-reported gender. Because of the cross-cultural nature of Facebook, crossing these two sources worked fairly well in inferring gender of the Twitter users. We tested the accuracy of this inference mechanism by randomly selecting 100 identified users and labeling their gender manually. The lexicon-driven gender inference mechanism yielded 83% accuracy. Following gender identification, we obtained a smaller set of likely new mothers comprising 177 users.

In the final step, we task crowdsworkers at Mechanical Turk (https://www.mturk.com/mturk/) with reviewing the set of

likely new mother candidates and ruling out cases of false positives, in pursuit of a high precision dataset. We showed each crowdworker (min. 95% approval rating, English language proficient, and familiar with Twitter) a set of 10 Twitter posts from each user in our candidate set, such that five posts were posted right before the index childbirth post, and five after the post. Our goal was to provide crowdworkers with contextual cues to help them to judge whether the author of the posts was a legitimate new mother. Additionally, we also showed the Twitter profile bio, picture, and a link to the Twitter profile for each user. The specific question involved responding to a yes/no/maybe multiple-choice question per user, to evaluate if the user was a new mother. We thus collected five ratings per user from the crowdworkers, and used the majority rating as the correct label (Fleiss-Kappa was 0.69). For our final dataset, we considered the users with the “yes” label and this set consisted of 85 validated new mothers.

Finally, for each of these 85 assumed new mothers, we queried their Twitter timelines in the Firehose stream to collect all of their posts in two 5-month periods, corresponding to prenatal and postnatal phases around childbirth (Dec 1, 2010 – Apr 30, 2011 and Jul 1, 2011 – Nov 30, 2011, respectively). We note that these were public timelines. We discuss privacy and ethical considerations in the Discussion section.

BEHAVIORAL CHANGE MEASURES
We propose several measures to quantify the behavioral change of the new mothers.

Activity Measure. We characterize activity via a measure we refer to as volume, defined as the average normalized number of posts per day made by the new mothers, over the prenatal and postnatal periods.

Emotion Measures. We focus on four measures of emotional state. The first two measures, Positive Affect (PA) and Negative Affect (NA) were computed using the psycholinguistic lexicon LIWC (http://www.liwc.net). LIWC’s emotion categories are large in size, broad in usage and semantics, and have been scientifically validated to work on Internet language (see [29] for psychometric information), as well as for affect computation (see [14] for their usage in short text data, in the context of Twitter). For the third and fourth measures, activation and dominance, we utilized the ANEW lexicon [4]. This resource provides a set of normative emotional ratings for a large number of words in the English language. The approximately 2000 words in ANEW have ratings in terms of pleasure, arousal, and dominance (over a 1-10 scale); and can therefore be suitably used to measure activation and dominance measures of Twitter posts.

(1) Positive Affect (PA). We define a measure of positive affect (PA) of the new mothers, during the prenatal and postnatal periods respectively. We focus on the words in the positive emotion category of LIWC [14]. Given a post from a new mother posted during a certain day, we thereafter perform a regular expression match exercise to determine the fraction of words that match the words in LIWC’s positive emotion category. This fraction gives the measure of PA per mother, per post.

(2) Negative Affect (NA). Like PA, we also define a measure of negative affect (NA) averaged over all mothers, during the prenatal and postnatal periods respectively. We again utilize LIWC for its negative affect categories: ‘negative emotion’, ‘anger’, ‘anxiety’, ‘sadness’ [14]. Based on the same word spotting technique, we measure NA per day, per mother.

(3) Activation. Our third emotion attribute is called activation. Activation measures the intensity of an emotion; hence it is an important dimension beyond PA and NA. As an example, while frustrated and infuriated are both negative emotions, infuriated is higher in activation. We adopt the ANEW lexicon [4] to determine the activation level of a given post for a mother, during the prenatal and postnatal periods. As with affect measurement, we follow a regular expression match exercise to spot for ANEW words in a post. Thereafter, using the corresponding activation values of each such word from ANEW, we determine a mean measure of activation per post, given a mother.

(4) Dominance. The fourth emotion-based behavioral attribute is called dominance. It represents the controlling and dominant aspect of an emotion. For instance while both fear and anger are negative emotions, anger is a dominant emotion, while fear is a submissive emotion. We again use the ANEW resource, and follow the same technique as activation measurement to determine the mean dominance of posts from each mother.

Linguistic Style Measures. We also introduce measures to characterize behavioral change, based on the use of linguistic styles in posts by mothers, during the prenatal and the postnatal periods. Linguistic styles capture how language is used by individuals and provide information about their behavioral characteristics subject to their social environment [29]. Typically researchers [27,29,33,38] have observed the usage of linguistic features, such as parts of speech that represent references and relationships in characterizing style [8].

We again use LIWC for determining 22 specific linguistic style markers including: articles, auxiliary verbs, conjunctions, adverbs, impersonal pronouns, personal pronouns, prepositions, functional words, fillers, assent, negation, certainty and quantifiers. To determine the usage of various linguistic styles, we again use a regular expression match exercise to find the proportion of each type of linguistic style words in a post from a mother. The mean value over all posts from a mother gives the final measure, per style.
Prenatal—Postnatal Comparison

We now explore the behavioral differences of new mothers in the prenatal and postnatal periods, using the three categories of measures defined in the previous section.

Comparison with a Background Cohort

Our first study examines variations in behavior on Twitter by the new mothers compared to the average Twitter user. For this purpose, we sample a random set of 50,000 users from the Firehose stream over the same timeframe to ensure consistency in comparison. We collect all of the posts shared for each general user over the time period, and then compute the daily behavioral measures using the methods discussed in the previous section. We refer to this sample as the background cohort.

We now report trend analyses of the measures over the studied time frame, contrasting the new mothers with the background cohort. In the set of trend analyses displayed in Figure 1, blue lines within each panel show the demarcation between the prenatal and the postnatal time periods; beige lines represent trends of mothers while green lines show the trends for the background cohort. For brevity and clarity, for the linguistic style category, we show only the usage of 1st person pronoun and the 3rd person pronoun which have been found to be demonstrative of particular characteristics of human emotion, including depression [29].

To quantify comparisons of these trends, we report in Table 2 the difference of means of behavioral measures, for each of the following four comparisons: the difference in behavior of background cohort between the time periods after and prior to childbirth (BA-BP); the change of behavior of new mothers between the time periods after childbirth with respect to prior (MA-MP); the change of behavior of new mothers compared to that of background cohort during the time period prior to childbirth (MP-BP); and the change of behavior of new mothers compared to that of background cohort during the time period after to childbirth (MA-BA). To further illustrate our findings from a qualitative perspective, we report a set of randomly selected example posts in Table 3, for all of the cohorts—MA, MP and BP, BA together.

The trends and difference of means of behavioral measures in Table 2 show evident distinctions between the mothers and background cohort after childbirth (MA-BA), including drops in posting volume and in PA, and an increase in NA (see Table 3 for an example of high NA post; also see the posts from the background cohort). Use of 1st person pronouns increases, while that of 2nd and 3rd person pronouns falls off. For these measures, we find that the differences between the mothers and the background cohort after pregnancy are statistically significant via independent sample t-tests (see Table 2 for details).

The mothers also show changes in behavior after childbirth, with most MA-MP measures showing statistically significant change based on t-tests (again, for mean

Figure 1. Comparison of behavioral measures between new mothers and the background cohort: volume (posts per day), Positive Affect (PA), Negative Affect (NA), Activation, Dominance, use of 1st person pronouns, use of 3rd person pronouns. Blue line represents the approximate time of childbirth.
amounts and directional change of, see Table 2). The overall volumes of postings drops, indicating that women are posting less on average, suggesting a possible loss of social connectedness following childbirth. This may be expected given the time demands following the birth of a child, and the example posts in Table 3 (e.g. post (4)’s reference to lack of socialization) for the MA group supports this observation qualitatively as well. Within the content they do post, however, we see a drop in PA and increase in NA, a shift potentially attributable to the mother’s physical, mental and emotional exhaustion [10], as well as the sleep deprivation typical of parenting a newborn. The NA trend (and to some extent the PA trend) for the mothers during the postnatal phase exhibits much higher variance, compared to that during the prenatal phase, possibly reflecting mood swings among the new mothers [15] as well as increased anxiety or being overwhelmed frequently but inconsistently. Post (2) indicating depressing feelings and helplessness attitudes, and post (3) in Table 3 for the MA group indicating anxiety and panic attacks, further bolster this observation.

The activation and dominance measures also drop during the postnatal phase indicating a decrease in arousal, again potentially attributed physical and mental exhaustion or some form of “maternity/baby blues.” Maternity blues typically exhibits as a heightened emotional state that can affect 80% or more of new mothers following the birth of a baby [25]. We conjecture that new mothers are likely to experience overwhelming fatigue from handling daily tasks around taking care of the baby and thus are more likely to express moods of low intensity (low activation) and more submission (low dominance). For instance, posts (1), (2) and (3) for the MA group in Table 3 (note words like “miserable,” “frustrated,” “disappointing”) show that mothers are describing their perceived helplessness in caring for their babies, and consequently appear to be expressing negativity of low arousal and dominance.

<table>
<thead>
<tr>
<th>Mothers after childbirth (MA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) [high NA] Ugh, my daughter hates her bassinet. I hate disappointing her. What a miserable day.</td>
</tr>
<tr>
<td>2) [low activation] My baby is only catnapping during the day. That’s so sad and depressing. I feel helpless</td>
</tr>
<tr>
<td>3) [low dominance] Anxiety/panic attacks need to eff off!!!!!!!!!!!!!!! I’m trying to lead a somewhat normal life with my baby!!!! #frustrated #miserable</td>
</tr>
<tr>
<td>4) [high 1st person pronoun use] No lie I fuckin miss all socializing.... my daughter keeps me occupied and exhausted. I have all my moments of the day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mothers before childbirth (MP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Derek & I sat on our screened in back porch listening to the thunderstorm & rain! So peaceful! Just to think in 35 hours we’ll be parents!</td>
</tr>
<tr>
<td>2) Pregnant for the first time and I’m afraid I won’t be able to stand the labor pain. Husband trying to reassure me, but he seems scared too. Thoughts????</td>
</tr>
<tr>
<td>3) I’m completely thrilled at the prospect of becoming a mother but the weight gain is bothering me :(:(. Do I just need to get over myself? Am I the only one :S</td>
</tr>
<tr>
<td>4) Days are getting busy!!! Need to start packing for the hospital, in case the baby is coming early!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background cohort (BP, BA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) @some_user lol they would have called the police girl. ooh and ma make chicken and rice tonight. I was like ooh she is gonna be mad…</td>
</tr>
<tr>
<td>2) I’ve waited too long for that and I’m okay if I have to wait again for 1 or 2 weeks maybe. But please don’t let me down.</td>
</tr>
<tr>
<td>3) Whenever someone tells me they’re a fan of Lady Gaga, I smile and just go ”Me too!” but in my mind I’m like <some_url></td>
</tr>
</tbody>
</table>

Table 2. Difference of means computed over various behavioral measures comparing new mothers and background cohort. Note that the differences for each measure are on different scales. Each column corresponds to change of behavior between two sets: e.g., (MA-BA) implies change of MA with respect to BA. Here BP and BA represent the background cohort prior to and after the childbirth, while MP and MA represent new mothers prior to and after childbirth.

<table>
<thead>
<tr>
<th>Measures</th>
<th>BA-BP</th>
<th>MP-BP</th>
<th>MA-BA</th>
<th>MA-MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.053</td>
<td>-0.837</td>
<td>-1.5242</td>
<td>-1.3958</td>
</tr>
<tr>
<td>PA</td>
<td>0.001</td>
<td>-0.014</td>
<td>-0.0483</td>
<td>-0.0294</td>
</tr>
<tr>
<td>NA</td>
<td>0.002</td>
<td>0.008</td>
<td>0.0325</td>
<td>0.0362</td>
</tr>
<tr>
<td>Activation</td>
<td>0.049</td>
<td>0.575</td>
<td>-0.6924</td>
<td>-1.6539</td>
</tr>
<tr>
<td>Dominance</td>
<td>-0.025</td>
<td>0.592</td>
<td>-0.7249</td>
<td>-1.3473</td>
</tr>
<tr>
<td>1st pronouns</td>
<td>0.006</td>
<td>-0.062</td>
<td>0.1272</td>
<td>0.1698</td>
</tr>
<tr>
<td>2nd pronouns</td>
<td>-0.008</td>
<td>-0.026</td>
<td>-0.1993</td>
<td>-0.1868</td>
</tr>
<tr>
<td>Indefinite pronouns</td>
<td>0.023</td>
<td>0.041</td>
<td>-0.1267</td>
<td>-0.1357</td>
</tr>
<tr>
<td>Articles</td>
<td>0.009</td>
<td>0.014</td>
<td>0.0984</td>
<td>0.1486</td>
</tr>
<tr>
<td>Verbs</td>
<td>0.010</td>
<td>-0.044</td>
<td>-0.0443</td>
<td>-0.0584</td>
</tr>
<tr>
<td>Aux-verbs</td>
<td>-0.007</td>
<td>0.019</td>
<td>-0.0357</td>
<td>-0.0311</td>
</tr>
<tr>
<td>Adverbs</td>
<td>0.025</td>
<td>0.033</td>
<td>0.0526</td>
<td>0.0942</td>
</tr>
<tr>
<td>Tentative</td>
<td>-0.004</td>
<td>0.019</td>
<td>0.0115</td>
<td>0.0112</td>
</tr>
<tr>
<td>Func. Words</td>
<td>-0.006</td>
<td>0.007</td>
<td>0.0072</td>
<td>0.0064</td>
</tr>
<tr>
<td>Negation</td>
<td>-0.008</td>
<td>0.078</td>
<td>0.0891</td>
<td>0.0954</td>
</tr>
<tr>
<td>Inhibition</td>
<td>0.003</td>
<td>-0.007</td>
<td>0.0316</td>
<td>0.022</td>
</tr>
<tr>
<td>Assent</td>
<td>0.022</td>
<td>-0.031</td>
<td>-0.0521</td>
<td>-0.0694</td>
</tr>
<tr>
<td>Certainty</td>
<td>-0.023</td>
<td>-0.037</td>
<td>-0.0597</td>
<td>-0.0647</td>
</tr>
<tr>
<td>Conjunction</td>
<td>0.048</td>
<td>0.083</td>
<td>0.0119</td>
<td>0.1391</td>
</tr>
<tr>
<td>Preposition</td>
<td>0.003</td>
<td>0.008</td>
<td>-0.0173</td>
<td>-0.0123</td>
</tr>
<tr>
<td>Inclusive</td>
<td>-0.002</td>
<td>-0.004</td>
<td>0.0073</td>
<td>0.0194</td>
</tr>
<tr>
<td>Exclusive</td>
<td>0.002</td>
<td>-0.007</td>
<td>-0.0086</td>
<td>-0.0099</td>
</tr>
<tr>
<td>Swear</td>
<td>0.005</td>
<td>0.022</td>
<td>0.0618</td>
<td>0.0777</td>
</tr>
<tr>
<td>Quantifier</td>
<td>-0.013</td>
<td>-0.019</td>
<td>-0.0261</td>
<td>-0.0363</td>
</tr>
<tr>
<td>Non-fluency</td>
<td>0.043</td>
<td>0.062</td>
<td>0.0913</td>
<td>0.1531</td>
</tr>
<tr>
<td>Filler</td>
<td>-0.002</td>
<td>0.008</td>
<td>0.0294</td>
<td>0.0592</td>
</tr>
</tbody>
</table>

*p < 0.01; p < .001; p < .0001

Similarly, the use of certain linguistic styles, particularly 1st person pronoun increases, while use of 3rd person...
pronouns drops, possibly reflecting the emotional distancing many new mothers go through after childbirth [19,30]. The sample post (4) in Table 3 for mothers after childbirth indicates this qualitatively as well. In this post, the particular mother appears to be experiencing exhaustion and pain, and exhibiting attention drawn to herself. She subsequently is found to use more first-person singular pronouns.

Though shown only in Table 2, we also observe increased use of articles, adverbs, conjunctions, swear, and negation style categories during postnatal phase for the set of assumed new mothers following childbirth with respect to the background cohort, as well as themselves before the birth of their child. Prior literature supports high usage of these styles with expression of negative emotion, or illness [6,29,38] that might correspond to the circumstances of some of the new mothers.

On the other hand, the difference of mean values of measures in Table 1, along with the example posts in Table 3, confirms an expected lack of change in the background cohort. Finally, the trends in Figure 1 reveal slight differences between the mothers and the background cohort before childbirth, suggesting an effect for pregnancy reflected in social media behavior (perhaps due to insomnia, exhaustion, physical discomfort etc.). In fact, these aspects are apparent in the posts for the MP group in Table 3, where mothers are discussing changes in sleep, weight gain (post (3)), labor pain (post (2)), and preparations prior to the birth-related hospital trip (post (4)). In essence, pregnancy is likely to disrupt mothers’ normal social media activities to some extent, explaining the seemingly minor differences with respect to the background cohort. However several of these differences are not found to be statistically significant (see Table 2), likely because the variance across the mothers is notably high (see, for example, the high variance in use of 3rd person pronouns in Figure 1).

In summary, we note that t-tests of means for various measures show statistically significant differences between pairs of cohorts. However, it is possible with our small sample size, that these significant effects could be a result of a handful of extreme-change mothers who have shown considerable behavioral anomaly, i.e., they changed more than others. Identifying these mothers specifically may have implications in terms of detecting potentially serious behavioral disorders and opportunities for intervention via development of new privacy-preserving services and applications. With such possibilities in mind, we focus more deeply on identifying individual level changes in our sample of new mothers in the following subsection.

Individual-level Comparison

To start, Figure 2 shows heat map visualizations of individual-level change for two measures: positive affect and activation. For brevity, we focus on these two measures as illustrative examples of variance in change across the new mothers, though we note that most measures showed similar patterns, as evidenced by the changes in the aggregated measures shown in Figure 1 and Table 2. The heat maps show decreases in PA and activation following childbirth for many mothers, but also give a sense of the variability across mothers, with some changing very little and some changing in the opposite direction of the majority.

![Figure 2. Heat-map visualizations show individual level changes for positive affect and activation in the postnatal period, in comparison to the prenatal phase. New mothers are represented in rows, time (in days) by columns. The colormap uses an RGB scale where red represents greater values and blue represents smaller values of each measure. The white line demarcation in each heat map shows the estimated time of childbirth.](image)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Small effect</th>
<th>Medium effect</th>
<th>Large effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>38</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>Emotion</td>
<td>17</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Style</td>
<td>43</td>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 4. Effect sizes (based on Cohen’s d) over the three types of measures. Numbers indicate the number of new mothers showing changes following childbirth of each effect size.

We formalize the individual-level differences across mothers by computing Cohen’s d, per mother and per measure, in order to distinguish sets of mothers with small, medium and large effect sizes (considered as $d \geq .2$, .5., and .8 respectively). That is, for each mother individually, we computed the effect size of the change in their scores on the measures before and after childbirth in order to determine the extent to which they changed. We report the number of mothers with changes of the three effect sizes in each of the three measure categories in Table 2. In order for a mother to be included in an effect size category, she had to show change at that level across all measures within the category. Thus the numbers in Table 2 do not sum to our total number of 85 mothers, as some mothers did not show change even at small effect size amounts.

To summarize, from Table 2 we observe that, although there is a substantial number of mothers with large effect...
sizes for each measurement category, activity and linguistic style measures show relatively larger number of mothers with large effect size changes. While fewer mothers undergo such changes for the emotion measures, on combining across all measure types, it turns out that the 12 mothers who show large effect changes for emotion measures also show large effect changes for the activity and the style measures. This set of 12 mothers then is the set of mothers whose behavior changes the most in the postnatal period across all measures, and stands out as having changed more broadly and more substantially than the other mothers studied in our data. For comparison purposes, we perform the same exercise to determine the set of mothers who show small effects consistently across all measure types, which comes to 15 mothers.

SIGNIFICANT CHANGE POSTPARTUM

In this final section, we explore in depth, the behavioral change of the mothers showing large effects.

<table>
<thead>
<tr>
<th>Mothers w/ small effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) I know some drs say it’s ok to be on meds while breastfeeding but it kind of freaks me out cause it isn't proven longterm for baby's health.</td>
</tr>
<tr>
<td>2) Days are passing by as I watch my son grow! Can’t wait for more and get together with the daddy!! Wish he was here</td>
</tr>
<tr>
<td>3) Just adjusting to having a new baby, new job and we just moved town. Need to calm down. Tips/suggestions on parenting, mothers??</td>
</tr>
<tr>
<td>4) Ugh... returning to work. I'm trying to enjoy these last few days with my baby...but all I can think about is that I will be leaving him for 10 hrs a day</td>
</tr>
<tr>
<td>5) I'm taking expressed breastmilk from the fridge on outings in the diaper bag and keeping it cool with an ice pack. Someone tried it?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mothers w/ large effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) This is my first baby, feel so blessed!! But angry abt being sick all the time. I guess my hormones haven’t taken nicely to this big change?</td>
</tr>
<tr>
<td>2) Starting to feel lost. I’m missing my love, my baby. Feel angry n disappointed in myself. Idk what to think or do....</td>
</tr>
<tr>
<td>3) My first time being alone with my baby and I cant stop crying. What is wrong with me? Am I depressed? Im just over here balling my eyes out</td>
</tr>
<tr>
<td>4) My DS doesn’t sleep more than 3 hrs at a time and cries often and is so difficult to calm down. Cant remember when was the last time I slept</td>
</tr>
<tr>
<td>5) Feel like having a breakdown! ...like the WORST mother... feel so terribly that this poor child is stuck with this horrible monster mother...</td>
</tr>
</tbody>
</table>

Table 5. Randomly sampled posts from mothers with small and large effect sizes.

In the light of the two behaviorally distinct sets of mothers identified (large and small effect sizes), we first present a more rigorous examination of data characterizing the mothers with small and large effect sizes. We present randomly sampled example posts from the two cohorts in Table 5. A qualitative comparison of the nature of content shared by the two cohorts reveals that the mothers with large effects exhibit signals that are likely indicative of a lowered sense of social support (“Starting to feel lost.”), generally unhappy postings (“Feel angry n disappointed...”), and even possible mental instability (“Feel like having a breakdown!”, “balling my eyes out”, “horrible monster mother”). Feelings expressed include anger, frustration and depression (posts (1), (3), (5)), lack of a sense of connectedness (posts (2), (3)), as well as physical discomfort and concerns about the baby (post (4)). On the other hand, the content from mothers with small effect sizes, although aligned with topics relating to bringing up the baby and expressing some sense of negativity (“Just adjusting...Need to calm down.”), is less emotion-laden. For instance, we find that these mothers are using Twitter to invite comments and suggestions on their problems around typical adjustments to having a new baby–work-life balance, issues with breastfeeding and so on (posts (3), (5)).

Language Differences

Next, we quantify these seemingly qualitative differences through a comparison of the overall language change (change in usage of stop word eliminated unigrams) of the set of mothers with large effects, with respect to the set of mothers with small effects, as well as the background cohort. The goal is to be able to determine what language accounts for the distinctive change of behavior among the mothers with large effects.

To this end, we first use the Euclidian distance measure to compute a numerical distance score between the usage frequencies of unigrams in the two sets (one corresponding to the prenatal phase, the other to the postnatal period) for each group. (We experimented with other distance measures like cosine similarity and Janssen-Shannon divergence, which showed similar results.) The word usage distributions are then sorted by the absolute amount of change, regardless of direction as Euclidian distance is a symmetric measure. Table 6 lists the unigrams showing the most change in usage for each of the three groups in the postnatal period, compared to the prenatal phase. In order to get a sense of the directionality of change, we compare the relative volumes postpartum with respect to prenatal, and show the +ve or –ve direction of change as ↑ or ↓ respectively. Again, we note that these are relative changes, meaning that the top changing words for the background cohort do not necessarily change as much as those for the mothers with large effect changes.

We observe that the type of unigrams that change significantly vary substantially across the three groups. The background cohort’s changes are mostly in words related to commonplace details of daily life (e.g., *tonight, here, morning, tomorrow*). For mothers with small effects, there is some evidence of going through the early childbirth
the other two groups. This reinforces our qualitative observation from Table 5 wherein we found these mothers using Twitter to seek support and feedback on their problems around typical baby upbringing issues. On the other hand, for the mothers with large effects, many words are emotional in nature (e.g., aw, blessed, love), again confirming the qualitative observations from Table 5 – see the usage of blessed in post (1) and the general affectionate postings (2) and (5) towards the baby.

Directionality of change in these words in Table 6 is critical. Considering the drops in PA and increases in NA shown earlier, along with the qualitative observations from Table 5, we are not surprised to see in Table 7, that many of the changes of the emotion words are in a negative direction for the mothers with large effects. For instance, use of haha and lol, frequently used terms of joviality expression in social media, are seen to drop sharply for mothers with large effect size. In fact, the example posts in Table 5, showing increased negativity and social isolation, make it further apparent why these mothers are not using these joviality words.

<table>
<thead>
<tr>
<th>Background cohort</th>
<th>Mothers w/ small effects</th>
<th>Mothers w/ large effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>now (↓), shit (↑), back (↑), that (↑), day (↑), life (↑), time (↑), them (↑), me (↑), you (↑), fuck (↑), today (↑), sleep (↑), tonight (↑), love (↑), good (↑), here (↑), her (↑), morning (↑), tomorrow (↑), go (↑), know (↑), him (↑), people (↑)</td>
<td>#past (↑), duh (↑), people (↑), photo (↑), post (↑), decision (↑), reunite (↑), women (↑), story (↑), time (↑), asap (↑), do (↑), life (↑), wait (↑), fired (↑), days (↑), happy (↑)</td>
<td>haha (↓), blessed (↑), lol (↓), #lifeisabetter (↑), awesome (↑), monthly (↑), fantastic (↑), cuddle (↑), home (↑), love (↑), sick (↑), aw (↑), scary (↑)</td>
</tr>
</tbody>
</table>

Table 6. Top unigrams showing the most change (in usage frequency) in the postnatal period, compared to the prenatal phase, for background cohort, mothers with small effects, and mothers with large effects.

Unigram Difference Analysis

Motivated by differences that we observed in language use among various groups, we explored the question of determining the number of unigrams whose change in usage frequencies actually renders the mothers with large effects significantly different from the background cohort and those with small effects. For the purpose, we introduce a greedy unigram elimination exercise for the mothers with large effects. Starting with unigrams exhibiting the most change (in usage frequency) in the postnatal phase as compared to prenatal phase, we eliminate in a greedy iterative manner unigrams from the lexicon of all unigrams for this group, computing the Euclidian distance at each elimination step, with respect to the other two groups. Naturally, as more unigrams with big changes are eliminated, the Euclidian distance of language of the mothers with large effects consistently approaches that of the other two groups. The iteration(s) at which the distance becomes equal to that of the mothers with small effects (or the background cohort) can be taken as an indicator of language change in the postnatal period compared to the prenatal phase.

The results of this greedy unigram elimination exercise and the two unigram difference measures identified during this process are shown in Figure 3. The first difference measure is observed when, after the elimination of top 199 unigrams with biggest change, the distance of language usage frequencies of mothers with large effects becomes the same as that of those with small effects. Further, we also encounter a second difference measure following the elimination of the top 1837 unigrams with most change, wherein the language distance of the mothers with large effects becomes equal to that of the background cohort.

The two unigram difference measures suggest that the deviations observed for the mothers showing large effect size changes are captured by a rather small number of unigrams (merely 1.16% of entire unigram vocabulary compared to mothers with small effects; 10.73% with respect to background cohort), or in other words, a narrow span of language. This tells us that the changes in the activity, emotion, and style measures we observed earlier appear to be subject to big changes in the usage frequencies of a only few words. As a direction of research, we are interested in the feasibility of using these thresholds, as well as the unigrams that drive significant change, to forecast unusual behavioral changes in individuals over time.
DISCUSSION

Theoretical Implications
Through a case study around childbirth, we have demonstrated how the measurement of behavior in social media can help us analyze changes around important life events. We have found that, for a subset of mothers studied (14–15%), activity goes down, PA goes down, NA goes up, activation and dominance go down together, and the use of 1st person pronouns goes up, while that of 3rd person pronouns goes down. We also notice that some mothers consistently show these dynamics over the entire postnatal period of our analysis. In essence, we find that a portion of new mothers exhibit signs of decreased social interactions, as manifested through social media, along with a number of changes in emotional expression in a generally negative direction. These behavioral markers have been associated with depression of individuals in the psycholinguistic research literature [6]. In particular, isolation and loneliness are known risk factors for depression and lowered self-esteem.

An exciting implication and future direction is the possibility of leveraging social media for unobtrusive diagnostic measures of emotional disorders in new mothers, such as postpartum depression (PPD). We believe that there is opportunity to extend such modeling to make predictions in advance of birth about those mothers who are at the highest risk of suffering with an emotional disorder following childbirth. The detected group of approximately 15% of new mothers who showed broad and significant changes in behavioral and emotional expression following childbirth aligns with published reported rates of PPD in the United States [19]. We are interested in aligning these or similar social media-based measures with ground truth data on PPD. Establishing ground truth would also help address another diagnostic challenge: distinguishing actual depression from more common postpartum blues. Such maternity blues are considered more transitory and usually ebb within a couple of weeks after childbirth [25]. Since large effect changes among some mothers were observed over a longer period of time (PPD can last up to an year following childbirth [10,19]), we may be seeing evidence of mood changes that are more serious than those associated with maternity blues. We will need ground truth data to justify this observation. With additional study, the methods we outline could come to play a valuable role in public health via providing anonymized aggregate measurements of behavioral changes in new mothers. Such population-scale measurements can help inform governmental agencies, support groups, and the larger medical community about of PPD and postpartum blues.

Design Implications
Our approach and findings frame directions with implementation and design. These include the development of automated services and tools working on behalf of new mothers that can help monitor behavior and emotion in a nuanced manner, based on their social media activity. For instance, the tool could be a smartphone application that connects to the social sites the mother uses, and computes various measures over time to reveal trends in a private manner. On an individual level, monitoring some of these trends can serve as a self-narrative and help with self-understanding and reflection. Automated assessment could serve as an early warning mechanism to mothers showing significant behavioral change. This feedback could be especially valuable for mothers who are not aware of their risk of PPD. A monitoring application could log trends and serve as a diary-style data source to aid doctors or other trained professionals gain a deeper understanding of their patients. Emotional markers identified by such a tool could enable adjuvant diagnosis of postnatal disorders, and serve as a complement to survey based approaches, such as the Edinburgh Postnatal Depression Scale [25], and help with diagnosis or early intervention by caregivers (e.g., via psychotherapy treatments) aimed at promoting the health and wellness of women following childbirth.

Privacy and Ethical Considerations
Concerns regarding privacy and ethics may arise with analyses of social media as they ultimately leverage information that may be considered sensitive—even if publicly available [23]. We believe that the methodology we have described can be employed in a private manner. On the analysis of publicly available data, we believe that it is possible to harness public data to generate applications that are used in a private manner by individuals. As mentioned earlier, in our case, all data are public and, with the exception of the relatively benign Mechanical Turk task of verifying Twitter users as moms who had recently given birth, all analyses were conducted anonymously. As discussed earlier, the privacy of the user can be honored with user-centric design of applications that restrict the sharing of such information to the user herself and optionally to a trained medical practitioner or support group. Nevertheless, this type of research, and consequently the nature of the findings it generates, needs to be considered with caution, and we encourage continued discussion of the topic by the research and practitioner communities.

Limitations
We now discuss several limitations of our measures and the techniques and tools used to compute them. ANEW was used for arousal and dominance, while LIWC was used for valence, separated into positive and negative affect. We performed these analyses because, while LIWC is a promising resource used extensively for PA/NA computation [14], it does not support activation and dominance measures. The potential inconsistency of using two different lexica can be viewed as a limitation of the availability of linguistic tools. More generally, a lexicon-driven approach for determining emotions of users has some limitations. First, the methodology takes into account merely self-reported affective words, and it is not known how much they truly reflect the psychological state of the
individual. Second, the approach does not take into account
negation that could be used in conjunction affective words
(e.g., “not happy”). In our context, we argue that while
these limitations may add noise to the data, they do not
invalidate the findings because: (1) we consider posts of a
particular user over a long time period, and given the large
numbers of posts (often in thousands), we observe
reasonably accurate psychological reflections of the users;
and (2) we perform comparisons across the prenatal and
postnatal periods. Hence issues with a lexicon driven
detection of emotion (e.g., use of negation) are likely to
equally influence both prenatal and postnatal periods.
Nevertheless, we believe that population-scale studies of
behavioral changes around events (e.g., collective trauma
[29]), which show promise in providing valuable signals in
larger populations, and are likely not an artifact of the
statistical methods that we used.

Moreover, while we find that the changes in behavior in
certain new mothers are revealed as postnatal changes in a
narrow range of words, we do not know the reasons behind
the significant drop or rise in the use of these words.
Hidden causes could include socio-economic factors,
financial problems, and other variables that we cannot see.
Availability of additional data about new mothers could
shed light on factors that influence the behavioral changes.

Future Directions
Our studies show general promise in how activity patterns
and language use in the social media posts of new mothers
can reveal nuances of their behavioral and emotional
change following a significant life event. Focusing on
behavioral changes seen in new mothers, we attempted to
lay the foundation for what we believe will be a rich line of
research on harnessing signals from online social media
activity to interpret, as well as predict and forecast
behavioral changes in individuals and for populations. We
hope that the work will lead to methods for providing new
mothers with valuable advice and help.

We are interested in opportunities for using social media to
both detect and explore the influence of other types of life
events on people. These include loss of a job or financial
instability (for understanding population scale
unemployment dissatisfaction, or economic indicators);
death-related grief and bereavement, and major physical
and psychological trauma.

CONCLUSION
Social media tools provide unique platforms to individuals
for personal expression, enabling them to share updates
about their daily lives, including communicating about
important life events. We conducted a case study on
detecting behavioral changes of new mothers following
childbirth, examining nearly a year of their posts on
Twitter. After obtaining a list of 85 new mothers via
identifying birth-indicative Twitter posts as well as
leveraging crowdsourcing tools, we proposed three
categories of measures—activity, emotion and linguistic
style—to capture behavior of the mothers over the prenatal
and postnatal periods. We observed that approximately 15% of
the new mothers show significant change compared to
other mothers and to a random set of Twitter users. By
examining the types of words that best characterize the
changes in language used on Twitter by new mothers, we
were able to identify a small subset of 1-10% words that
most contribute to the linguistic shift. These words define a
distance measure that can be used to identify new mothers
who show the largest linguistic divergence from the general
population. We hope that the methods and results we have
presented will frame new directions for promoting the
health and wellbeing of new mothers.

REFERENCES
life style changes in diet and physical activity: a
Exploiting social networks to mitigate the obesity
epidemic. Obesity 17: 723-728.
Mood and Emotion: Twitter Sentiment and Socio-
for English words (ANEW). Gainesville, FL. The
NIMH Center for the Study of Emotion and Attention.
5. Brubaker, J. R., Kivran-Swaine, F., Taber, L., and
language of bereavement and distress in social media. In
7. Consolvo, Sunny, McDonald, David W. & Landay,
technologies that support behavior change in everyday
Kleinberg, J. (2012). Echoes of power: Language effects
Not All Moods are Created Equal! Exploring Human
Emotional States in Social Media. In Proc. ICWSM

