3.2. Volumes.

Three types: (Three key formulas)

1) Disk (cross-section): \[V = \pi \int_a^b \text{Radius} \, dx \]

Solid of revolution:

2) Washer: \[V = \pi \int_a^b [\text{Outer Radius}^2 - \text{Inner Radius}^2] \, dx \]

3) Pyramid (square cross-section): \[V = \frac{1}{3} \int_a^b \text{Length}^2 \, dx \] (side)

Diagram:

- Point → Length
- Area → Volume

Differentiation → Integration

- Area: \[\int_a^b \text{Area} \, dx = \int_a^b \text{Length} \, dx \]

Generalization (Area → Volume):

- Volume: \[\int_a^b \text{Volume} \, dx = \int_a^b \text{Area of the cross-section} \, dx \]
we only deal with two types of cross-sections.

- disk
 (Washer: two disks)

- square

region bounded by
\[y = \sqrt{x} \] from \(x=0 \) to \(x=1 \)

rotating with respect to \(x \)-axis.

at position \(x \), the cross-section is a DISK with
radius \(r = \sqrt{x} \).

Area = \(\pi \cdot r^2 = \pi \cdot (\sqrt{x})^2 \).

Volume = \(\int_0^1 \pi \cdot (\sqrt{x})^2 \, dx \) (Set up integral only)
The solid (outer) generated by $y = -\sqrt{x}$ is I.
The (inner) solid generated by $y = \sqrt{x}$ is II.
The shadow solid = I - II.
Cross-section is a comb of two disks.
Area = $\pi \cdot \text{Outer} - \pi \cdot \text{Inner}$
Volume $\pi \int_0^1 [(\sqrt{x})^2 - x^2] \, dx$.
(Setup only)

Pyramid: The same region as above (as base). The cross-section is a square perpendicular to x-axis with side in x-y plane
$L(x) = \sqrt{x} - x$.
Area of square = $L(x) = (\sqrt{x} - x)^2$
Volume $\int_0^1 (\sqrt{x} - x)^2 \, dx$.
Rotating about \(y \)-axis:

\[y = \sqrt{x}, \quad y = 0 \text{ to } y = 1 \]

rotated about \(y \)-axis

\[
\text{Volume} = \pi \int_0^1 y^2 dy
\]

Rotating about \(x \)-axis parallel \(x \)-axis (along \(x \)-direction)

\[y = 1, \quad (w \text{ y } = -1) \]

Region: \(y = \sqrt{x}, \quad y = x, \quad x = 1 \)

Cross-section:
- Outer Radius = 1 - \(x \)
- Inner Radius = 1 - \(\sqrt{x} \)

\[
\text{Volume} = \pi \int_0^1 [(1-x)^2 - (1-\sqrt{x})^2] dx
\]